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PART T.

Preliminary.— Professor StorEs's Report to the British Association, 1862, with Outline
of the Method.

Section IL.—Rewview of Previous Experiments and Criticism of FRESNEL'S.

Ix his report to the British Association in 1862, Professor STokEs says: “ The exact-
ness of the spheroidal form, assigned by HuvGHENS to the sheet of the wave surface
within Iceland spar, does not seem to have been tested to the same degree of rigour
as the ordinary refraction of the ordinary ray; for the methods applied by WoLLASTON
(Phil. Trans., 1802, p. 381) and MaLus (Mem. de V'Institut Sav. Ttran., tom. ii. , p- 303,
1811) for observing the extraordinary refraction can- hardly bear comparison for
exactness with the method of prismatic refraction adopted for the ordinary ray; and
observations on the absolute velocities of propagation in different directions within
biaxal crystals are almost wholly wanting.

“ This has long been recognized as a desideratum, and it has been suggested to
employ for the purpose the displacement of fringes of interference.

“It seems to me that a slight modification of the ordinary method of prismatic
refraction would be more convenient and exact.

“ Let the crystal to be examined be cut, unless natural faces or planes of cleavage
answer the purpose, so as to have two planes inclined at an angle suitable for the
measure of refractions; there being at least two natural faces or cleavage planes left
undestroyed, so as to permit of an exact measure of the directions of any artificial
faces. The prism thus formed having been mounted as usual and placed in any
azimuth, let the angle of incidence or emergence (according as the prism remains fixed
or turns with the telescope) be measured by observing the light reflected from the
surface, and likewise the deviation for several standard-fixed lines in the spectrum;
each observation furnishes us with an angle of incidence and the corresponding angle
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of emergence, the angle of the prism being known. For if ¢ be the angle of incidence,
D the deviation, ¢ angle of prism, 1 angle of emergence,

D=¢+y—1
“ But without making any supposition as to the law of double refraction, or assuming
anything beyond the truth of HuvenENs’s principle, which, following directly from the
superposition of small motions, lies at the base of the whole theory of undulations,
~ we may at once deduce from the directions of incidence and emergence the direction
and velocity of propagation of the wave within the crystal. Forif a plane wave be
incident on any plane refracting surface, it follows directly from HuveHENS'S principle
that the refracted wave or waves will be plane, and if ¢ be the angle of incidence,
¢’ the inclination of the refracted wave to the surface, V the velocity of propagation in
air, v the wave velocity in the crystal
sin ¢ sin ¢’
v v
“ And if ¢" ¢ be the inclination of either refracted wave to the faces of our crystal
prism we have

vsing=Vsing . . . . . . . . . . (1)
vsiny=Vsinygy . . . . . . . . . . (2
dH¥=: . . . . . . . .. (3

adding and subtracting (1) and (2) and remembering (3), we get respectively
v sin ¢1_21!' cos & ZQ!I_V sin = 5 008 W;\P— N O
vcos &F 5 ¥ sin ® 2‘P_V cos ~ 5 sin qb,g\# N )

“ By division
Nk AU b ¢ =y’ ‘!"
5 cot =5+~ 5 = tan = 5 cot
or

tan =¥ = tan ; * tan 27 1# cot - ¢+"’ N ()

“ Equations (3) and (6) determine ¢’ and ¢/, and v is known from

sing _ sin¢’
V. w

siny  siny’
vV T

or
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‘“ Hence we can find the velocity of propagation of the wave, the normal to which
lies in a plane perpendicular to the faces of the prism, and makes known angles with
those faces, and hence with the crystallographic axes.”

In accordance with these suggestions, I undertook a series of observations at the
Cavendish Laboratory, Cambridge, which I propose in the present paper to describe; I
also wish to discuss the results arrived at, and to compare them with those deduced
from FRESNEL'S and some of the rival theories of double refraction.

But previous to this it seems natural to devote some space to the consideration of
the experiments that have already been made with the same object.

These we may divide into two classes: (1.) Those which have reference to Iceland
spar and other uniaxal crystals; (2.) Those in which biaxal crystals were used.

BrEwsTER (Thirteenth Report of the British Association) proved conclusively that
one wave in Iceland spar obeys strictly the ordinary law of refraction.

SwaN (Edinburgh Trans., vol. xvi,, p. 375) obtained by direct measurements with
prisms placed in the position of minimum deviation values of the ordinary refractive
index, which differ at most by -00002.

To verify his construction for the extraordinary ray, Huveress himself made but
few experiments, and it was not till 1802 that Worrnaston (Phil. Trans., 1802, p. 381)
attempted to test the theory with any degree of exactness.

In 1810 Marus (“Théorie de la Double Refraction,” Paris Mém. des Savants
IE'Itrangers, tom. ii., p. 8303) undertook a series of experiments with the same object in
view.

Rather later, Bror undertook the same task, while more recently Rupsere (Pocc.
Ann,, vol. xiv., p. 45) and MASCART have measured the values of the principal indices
by means of prisms cut parallel to the axis. '

Since 1862 Professor STokES has applied the method indicated above to prisms of
Iceland spar, and finds the results of experiment agree with HuveHENS's construction
with a possible difference of "0001 in the values of the refractive index. The details
of the experiments are as yet unpublished.

(2.) We must consider next the case of biaxal crystals. Various experimenters have
determined the values of the principal refractive indices for different crystals. Frusnzur
alone has endeavoured to verify his theory by experiment (‘ (Huvres Complétes de
FrESNEL,” tom. ii., p. 415; second supplement to the ‘Mémoire sur la Double Refrac-
tion”). The method adopted was to observe the displacement of the fringes of inter-
ference, formed from two parallel slits, produced by introducing two plates of topaz of
the same thickness cut in different directions from the same crystal into the paths of
the pencils proceeding from the two slits respectively, and to compare this with the
displacement calculated on FRESNEL’s theory.

The first set of observations combined with the angle between the optic axes serves
to determine the principal velocities a, b, ¢. @ being assumed to be unity, let
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P=a>—B=1—-7
A=a?— y=1—y

Then
B =0°00338
y  =001222
y—B=000884

In the second set of observations the plates are inclined to the incident light, so that
the light when in the crystal passes along an optic axis.

To calculate the displacement of the fringes on FRESNEL’s theory, it becomes neces-
sary to know the velocity of the light in the crystal ; this is given by

vP=1—rysin ¥

x being the angle between the direction of vibration and the normal to that circular
section of the wave surface whose radius is ¢ or unity.

Hence
v=1—34ysin’y
neglecting ?* sin* x, &ec.
Theory gives for the displacement measured in wave lengths

N=1273
Experiment gives

N=11-87
For the other two waves theory gives

N=4603
Experiment gives

N=45"49

In the third experiment the light was incident at about 60°.
In this case, ¢ being the angle between the direction of vibration and the normal to
the circular section radius b

v,*=1—B cos’ p—1 sin® ¢
and to the same approximation

v, =1—4(B cos? p+4y sin® ¢)

Whence theory gives :
N=19'57

Experiment gives
N=2063

Thus in each case the agreement between theory and experiment is fairly close ; but
we must remember that the quantities to be measured are very small, and that in
obtaining the theoretical results, small quantities have been neglected, without showing
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the effects they would produce, and which, though small, may be sufficient to constitute
the difference between FrESNEL'S and some rival theory. Moreover, the values of the
principal refractive indices in topaz are so nearly equal that any conceivable wave-
surface will differ but little from two spheres.

To estimate then the weight which we may attach to these results, let us see how
far the experiments are consistent with one of the rival theories.

Now the equation to the surface of wave slowness in the theories of GREEN and
CavcHY involves more constants than the three principal refractive indices of the
crystal.

To determine these we must make the principal sections agree with experimental
results in more points than the extremities of the axes; and it is probable, therefore,
that they will differ but little throughout.

In fact, the existence of these unnecessary constants is a radical defect in both these
theories.

Lord RavrEieH, however, has proposed a theory in which the only constants are
the principal velocities (Phil. Mag., vol. 41, series 4, 1871).

The shape of the surface of wave slowness is also considerably different from that
given by FRESNEL’S theory.

Tts principal sections consist of a circle and the inverse of an ellipse instead of a
circle and an ellipse.
~ He supposes “ the density of the ether in a crystal to be a function of the direction
of displacement,” while the forces called into play are the same as in a homogeneous
medium.

From this he deduces as the equation to determine the velocity of a wave front, of
which the direction cosines of the normal are /, m, n, the equation

a’l? V*m? c*n?

Vo2 Ve T ye_g2

=

a, b, ¢ being the principal velocities.
Let us find the velocity for a wave perpendicular to the plane zz, making an angle

o with Oz, [=— sin a, m=0, n= cos o.
V2(c? cos? a+a? sin® o) =a’c?

or since a=1, ¢=1—y
V2{(1—y) cos® a+ sin® a} =1—y
V=(1—y)(1 47 cos? o)t
V=(1—4%y)(143y cos® o)

‘neglecting y?, &c.

V=1—1y(1— cos’ a)

=1—Lysin®a
2 P2
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But replacing « by x, this is exactly the form found above for v, in FRESNEL'S
second experiment.

Now let us take a wave perpendicular to the plane yz inclined at an angle ¢ to Oy.
Then I=0, m= sin ¢, n= cos ¢, and the equation for V? becomes

b*sin® ¢ | c* cos® ¢
Ve_p2 AL

V(b2 sin? p-4-c? cos? ) =b?

or
V(1 —Bsin? ¢—y cos® ¢p)=(1—pB)(1—y)=1—(B+y)

to the same approximation

V= {1—4(B-+)} (1+4(8 sin® oty cos® )}
=1—4(B cos® ¢+ sin? §)

and this agrees with the formula used in FrRESNEL’S third experiment.
Thus FrRESNEL'S experiments afford as much a verification of Lord RAvLEIGH'S
theory as of his own, and are, therefore, an insufficient test of the truth of either.
They are, however, the only attempts made to verify the theory.

Section IL.—Description of the Apparatus used and Method of making the Kxperiments.

My own work was undertaken in the hope of obtaining results sufficiently accurate
to decide between some of the various theories which have been propounded.

I proceed to describe the apparatus used.

The crystal itself was a piece of arragonite, very clear and of a light colour, obtained
from Germany by the Demonstrator at the Cavendish Laboratory, Cambridge, through
Hirger, of Tottenham Court Road, London, W.C.

Originally it was in the form of an hexagonal prism.

Four of the faces were those marked m in Professor MILLER's mineralogy, the other
two were the faces marked a.

The natural ends had been cut off, and the artificial ends were approximately per-
pendicular to the m and « faces.

The crystal consisted of several twins, the twin planes being parallel to two of the
m faces.

At this stage Professor StoxrEs kindly undertook to examine the crystal, to deter-
mine in which direction to cut it with the greatest advantage for the purposes of the
experiment. He found that fair reflexions were obtained from three of the m faces,
and decided that they should be left untouched to determine the position of any other
cut faces.

Again, the mean axis of elasticity bisects the angle between the contiguous m faces ;
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the optic axes lie in the plane perpendicular to this axis. A prism formed with its
refracting edge nearly parallel to the axis of b, would permit of observations being
made in a plane passing nearly through the optic axes; and it was found that, by
inclining the faces so that the axis of « nearly bisected the angle of the prism, and
making that angle about 42° light could be passed through the crystal in the direction
of either optic axis. It was therefore thought right that the prism should be so cut.

Moreover, by polishing one of the a faces and cutting a face nearly coincident with
the fourth m face, a second prism was formed with its refracting edge nearly parallel
to c.

It was important to get observations in different zones from the same piece of
arragonite, for its chemical constitution is more or less variable, and the constants—u.e.,
the principal refractive indices-—may vary in different specimens.

The work of cutting was successfully performed by Hireer, and the faces of the
prisms were very fairly plane.

The crystal being thus cut, it remained to determine accurately the position of the
cut faces with reference to the crystallographic axes.

For this purpose, and throughout the observations, I used a goniometer, by GRUBB,
kindly lent me by Professor SToKES.

The collimator is fixed to a graduated circle of about 9 inches diameter. The
graduations, which are in silver, are on the fla¢ face, not the limb of the circle, and the
circle is divided to arcs of 10"

Attached to the reading telescope there are two verniers; the graduations on the
wverniers being in the same plane as those of the circle; and by means of these the
circle can be read to angles of 10”.

In the centre of this circle there is a table to hold the prism; the table being
attached to a second graduated circle with verniers which can be read to half minutes.

It was requisite throughout the experiments to have the edge of the prism parallel
to the axis of revolution of the telescope.

To attain this the prism was attached to a stand, adjustable with set screws, which
rested in slots on the table of the goniometer.

The reading telescope was fitted with a needle point instead of the usual cross wires.

In order to level the prism, I covered half the slit, so that when viewed directly the

line of junction of the covered and uncovered portions coincided with the needle
point. :

I then moved the telescope until the images of the slit, formed by reflexion at the
faces of the prism, were brought in turn into the field; and altered the levelling
screws till the same coincidence was obtained.

Homogeneous light was secured by using a BunseN’s burner with a platinum wick,
one end of which was immersed in a saturated solution of salt-and-water.

By the advice of Professor StoxEs, the observations were made at angles of incidence
increasing in arithmetic progression.
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The direct reading was taken several times during each day’s work to avoid error.

The method of observing was as follows:—I set the telescope to a given scale
reading, and turned the prism till the image of the slit seen by reflexion at one of its
faces coincided with the needle point.

The difference between the direct reading and the known one to which the telescope
was set gave the supplement of twice the angle of incidence, whence the angle of
incidence is easily obtained. I then turned the telescope till one image of the slit seen
by refraction through the prism coincided with the needle point and took the reading.

The difference between this and the direct reading gave the deviation for that wave.
The observation was then repeated for the second wave.

I then reset the telescope, so that its axis made an angle of 4° with its former
position, and took a similar set of observations. This gave a series of deviations
corresponding to angles of incidence increasing by 2°.

Just in the neighbourhood of the optic axes, observations were made at every 1° of
incidence.

For the first prism, each observation in the set finally chosen was repeated three
times, and the mean of the results taken.

The difference between this mean and any observation was only in a few cases as
great as 10”.

In the case of the second prism, the observed values of the deviation on different
days for the same angle of incidence agreed so closely, rarely differing by more than
20", that it seemed unnecessary to take a third set.

I found also that the refracted images were much more distinct for angles of
incidence greater than that for minimum deviation, than for angles less.

On passing through the position of minimum deviation, I therefore reversed the
‘prism, so that the face of incidence became that of emergence.

Fig. 1.

Thus, if A B C D be the ray undergoing minimum deviation, for a ray such as
PBQR, I made P B the incident ray, Q R the emergent; while for a ray like
S BT U, Ireversed the prism, so that U T became the incident, B S the emergent ray.

The cause of the increased distinctness lies in the fact that as the angle of incidence
increases from that giving minimum deviation, the breadth of the image of the slit
decreases, and vice versd.
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Section IIL.—Determination of the Position of the Principal Plane of the First Prism
with reference to the Crystallographic Axes— Values of the Quantities observed in
the Experiments, and Calculation of the Reciprocal of the Wave Velocity for the
First Prism.

We proceed now to the measurements made to determine the position of the
principal plane of the first prism, of which the faces are P P,

Fig. 2.

Let A B Cbe the points in which the axes of the crystal cut a sphere, with its
centre at the origin. :

Let M M’ be the poles of the m faces of the crystal, M M’ lie in the great circle
A B, and the angle M M’ is known; also B M=B M’; let P P, be the poles of the
cut faces of the prism.

Let

PM=6, PM'=¢
PM=6,PM =0

Let a, B, v be the angles which O P makes with the axes.

Let MA=p.

From triangle P A M,

cos PM= cos AP cos AM+ sin AP sin AM cos PAM

or

cos = cos & cos w-sin & sin p cos A
From P A M/,

cos 0'=— cos a cos u- sin @ sin p cos A
% €08 == cos o cos p== cos &'} cos a cos p

cos @ — cos 8"
SLeosa=m————————
2 cos p

. 0+6 . 9 -0
Sin Sin. ”5’“

=t
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Again, from triangle P M B,
cos PM= cos BP cos BM+ sin BP sin BM cos PBM
or
cos 0= cos B sin u+ sin B cos p cos B
and from P B’ M,
cos '= cos B sin u— sin B cos u cos B

__cos 04 cos @’

.ocos B= 2 sin g
+or 00
€oS — 5 C0s
e 1]
sin p

Now the angles § 0" were determined by observation.

Each angle was observed six times on two different days.

The mean of the results was,

0= 77°18" 44"
'=100° 43" 30"

Some difficulty was experienced about the angle u.

Professor MILLER gives it as 58° 5”; but this, when substituted in the above formule,
gives a value for P P, the supplement of the angle of the crystal, which differs con-
siderably from the measured angle.

I therefore measured the angle u and found it to be 58° 30" nearly.

Mr. GARNETT (the Demonstrator at the Cavendish Laboratory) kindly communicated
this result to the Rev. H. P. Gur~NEY, of Clare College, who was then lecturing for
Professor MrLLER, and he measured the angle with very nearly the same result as I
had already arrived at. Taking, then, the value he obtained, and assuming as before
that O B bisects the angle M O M, we have

p=58° 28’.%

Whence from the formulee (1) (2)
a=67°10"35" . . . . . . . . . . (8)
B=8852 40" . . . . . . . . . . (&

For the position of P, we have similarly,

6 = 80° 39’
9//=1010 16" 23”7
Whence,
@==69°59"20" . . . . . . . . . . (5
B=91° 630" . . . . . . . . . . (6

* This value of the angle u is given in Dana’s ‘Mineralogy,” for specimens of arragonite coming from
Silesia. The piece used was obtained from that neighbourhood.



MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL. 297

To determine the angles B A P, B A P, the triangles B A P and B’ A P, give
<since AB=7-T->

2

cos PAB="2 B

sin e

whence

| BAP=88° 46" 40”
similarly from B" A P,
B'AP,=88° 49" 10”

Fig. 3.

From triangle P A P,

cos PP,= cos AP, cos AP+ sin AP, sin AP cos PAP,
‘Whence

PP,=137°9 55"
The mean of numerous experiments gave
PP =137° 9" 80"

The smallness of the difference affords a strong presumption in favour of the
measurements.

Let PP, cut A C' in L.

Then _
sin APP="T2Y i AP
Whence '
APP=0°8"23" . . . . . . . . . . (7)
Again
cot LP sin AP = cos AP, cos AP Li+ sin AP L cot LAP,
S LP=67"2725". . . . . . . . . . (8)
. sin AP, sin LAP,
sin ALP= Sin LD,
ALP=1°12"4" . . . . . . . . . . (9

MDCCCLXXIX. 2 Q
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sin AP, sin AP, L
sin ALP,

AL=2°31"58". . . . . . . . . . (10)

sin AL=

The solution of the triangle A L P leads to the same results.

We now come to the experimental determination of the deviation and the calcula-
tions of the refractive indices.

Throughout the work for this prism, ¢ represents the angle between the normal to
the wave incident on or emerging from the face P, when in air, ¢ the corresponding
angle in the crystal, while ¢ ¢ are the angles for the face P. I propose then to give a
table of the values of ¢ or ¢ according as the wave was incident on P, or P.

(2.) Of D+, 7 being the angle of the prism, D47 is given because the expression
ﬁ;_k, which 1s equal to D—j~, occurs in the formula, and it saved trouble to calculate
D¢ at once from the readings.

(3.) Of the values of ¢’ deduced from the formulae

e _ B oy S8

3 = tan = tan

proved in the first section and ¢+ =:.
(4.) Of the values of u the refractive index as the mean of the results, given by
the two formulse
sin p=p sin ¢’
sin y=p sin

Any difference in the two values of p found from these two formulae was due only to
the errors necessarily arising from the use of proportional parts, and rarely exceeded
100001 |

I also introduce a list of errors in the calculated quantities which would occur from
errors of 10” in each of the observed quantities, taken so as to produce the maximum
effect in the result.

This list was obtained by setting down from the tables the errors to which the
supposed errors in D and ¢ would give rise.

The numbers in the table of errors for u are the digits in the fifth place of decimals.

The next page gives the complete work for one observation as a sample.
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Work for reducing one Observation.

Direct reading . . . . . . 263° 39
Reflexion reading . . . . . 180° 5
Deviation reading . . . . . 297° 84" 12"
t=angle of prism . . . . . 42° 52" 30"

¢=2={180— (Direct—Reflexion) }
=1(180° 5'—83° 39)
=48°18". Error—5".

D4i=D—220° 48’ 30"
=76° 45" 42”, FError+10".

Yy=D+1—¢p=28° 32" 42”. Error+415".

?.i;l’_—_D;”=38° 29’ 51”. TError45'.
—nlp
?ST“’zcﬁ_'g.f—lp::g’ 50" 9”. FError—10".

L tan %:9'5936354.

L cot (f"‘: ¥ Error. L tan (p_—g'il' Error. L tan ¢ g\[” Error.
10-1012497 216 9-2389842 —1252 89338693 —1036
¢ —y " "
2
4° 54/ 30" —4 26° 19" 45" —4 16° 30" 45" +4
Lisin ¢ Lisin ¢’ log p
9-8725466 —94 © 96469206 —170 2256261 —76
L sin ¢ L sin ¢/ log u
96792905 580 94536616 284 2256289 396
o from ¢ w from mean
1-68123 —3 168124 +15 1681235

2 Q 2

299
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Section IV.—Description of the Second Prism . Position of its Azes.—Observed Values

of the Deviations and Angles of Incidence, and Calculation of the Reciprocals of
the Wawe Velocity.

It will be remembered that, in describing the cutting of the crystal, I stated that a
second prism was formed with its edge nearly parallel to C, and its faces not differing
much from the m and a faces of the crystal.

Fig. 4.

Let the figure, fig. 4, represent a section of the crystal by a plane perpendicular to
the m faces.

The traces of the faces of the second prism are A B and C D.

The greater part of the face A B lies in the twin crystal, so that the results for the
second prism apply to that crystal.

On examination, the m face B C was seen to consist of two parts, which are not in
the same plane.

Observation showed that the upper half (the prism being placed as in the figure) is
in the same zone as the faces D E, E F, while the lower portion is considerably
removed from this zone.

I found also that when the faces D E, E F, were levelled, the line of junction of
the dark and bright portions of the slit, when seen by reflexion from A B, coincided
with the needle point; so that A Bis in the same zone as the m faces; while the
reflexion from C D, though in the field, was too high. Thus if Q Q,, fig. 5, be the
points where the normal to A B, fig. 4, and that to C D, fig. 4, produced backwards
meet the sphere of reference, A, B, C, fig. 5, being the poles of the principal planes ;
Q lies on the great circle A M B; Q, is slightly below it.

Let M, M/, fig. 5, be the points where the normal to E F, and that to E D pro-
duced backwards cut the sphere. Then

AM:AM//=580 28",
The mean of several observations gave for MQ=103° 58’. Hence
AQ=45°30". . . . . . . . . . . (1)

The mean of the observations for M Q, and M Q,, gave
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MQ,=57° 51" 30"=0say;
M/Q,=59° 9'=§ say ;

and the triangles M A Q, M'A Q, give,

cos 0+ cos 6
cos AQ = “Seosn
where u=AM=M/A.
Whence substituting for  and ¢’
AQ=2°43"20" . . . . . . . . . . (2
Fig. 5.

In the triangle M A Q, the three sides are known; we can thence find the angle
M A Q, and obtain
MAQ=76°24"45. . . . . . . . . . (3

In the triangle Q A Q, the sides A Q, A Q, and the angle Q A Q, are known

AQ = 45° 30’
AQ= 2°43 20"
QAQ,=103° 35" 15”
Whence from the formula
cos QQ,= cos AQ cos AQ,+ sin AQ sin AQ, cos QAQ,

we get
QQ,=46° 12" (or rather less).

The mean of several experiments had already given for the value of QQ,
46° 10’

These results, differing as they do by less than 2/, afford a verification of the
accuracy of the measurements.
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The position of the plane Q Q, is completely determined by the arc A Q and the
angle A Q Q,; we have already found,

AQ=45° 30’
For the angle A Q Q, the triangle Q A Q, gives

sin AQQ,= %" gg' sin QAQ,

whence
AQQ=487"20" . . . . . . . . . . (4

Thus we see that the principal section of the second prism is inclined to the plane
¢ at an angle of 4° 37" 20”.

I mentioned above that the second prism lay in the twin crystal. This was proved
by passing light through the crystal, in a plane nearly parallel to the principal plane
B C, when four images of the slit appeared. On cutting off the end containing the
second prism, two images vanished ; on cutting off the other end, only the second pair
vanished, and the first pair reappeared. The work for the first prism was done with
the second pair, the first pair being rarely sufficiently distinet for measurement.

Throughout the work, ¢ ¢ denote the angles which the normals to the incident or
emergent wave, and the wave in the crystal make with the normal to the face Q.

The same remarks as to the reversal of the crystal hold as in the case of the first
prism.
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Section V.-—Determination of the Values of the Principal Indices.—Angle between
the Optic Axes.

Our next step is to determine the values of the refractive indices on FRESNEL’S
theory.

It has been shown (Section III.) that the principal plane of the first prism cuts the
plane C A (' in a line inclined at an angle of 2° 31" 58" to O A, and makes with that
plane an angle of 1° 12" 4”7,

Let us consider the intersection of this plane and the plane B C, B" C'.

Fig. 6.

It will be a line, M O M/, say, inclined at 1° 12, or rather less to C O €',

Take O A, O B, O C, as axes of w«, 4, 2, and let p,, ps, pe be the principal refractive
indices, and therefore the semi-axes of the surface of wave slowness.

The sections of the surface of wave slowness on FrESNEL'S theory by the plane
B O C are a circle of radius g, and an ellipse axes pj, p. in the directions of O C, O B
respectively. -

Hence the values of the radius vector in this direction given by experiment—t.e.,
the values of the refractive indices for light traversing the crystal in this direction—
are p, and the radius vector of an ellipse axes u;, p., inclined at about 1° 12" to w;.

To determine which of the experimental values of w is in this direction we require
to find L M, L being the point of intersection of M M’ and A C'.

From the triangle C' L M, since C’ is a right angle,

cos LM = tan 'L cot LM

‘Whence
LM=s7°28' 4" . . . . . . . . .. (1

And if O P, be as before normal to the face P, of the first prism,

LP,=67° 27" 25" [Section II1. (8)].
Whence
MP,=20°0"39" . . . . . . . . . . (2
2 R 2
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and MP, measures the angle between the wave normal required in the crystal and the
normal to the face P,.

This is the angle we have denoted by ¢'.

From Tables II., IIL., VIII., and IX. we have corresponding values of

¢ 2
19° 32" 217 168134
20° 34" 277 168130
20° 28" 9”7 168119
19° 29" 32" 1-68123

Other observations gave

¢’ Iz
19° 89 22” 168126
20° 417 22" 168129

Again, none of the experimental values of w in Table IIL, lines 1 to 11, and
Table IX,, differ greatly from 168125, and this is not far from the mean of the six
observations recorded above.

We take, then, this as the radius vector of an ellipse axes uj, w, inclined at 1° 127
to Mo

To determine pu, we must have recourse to the second prism.

Did the plane of the second prism coincide with that of @ ¥, the values of u in
Table XXI. would all be equal to w..

We shall consider later the effect of the inclination of the plane of the prism to that
of x ¥, but for the present may remark that the values in Table XXI. differ little from
1'58018, the value of u, found by RUDBERG.

Let us take therefore
m,=1530138 . . . . . . . . . . . (3)

We have then in the plane B O C

1  cos*@  sin?é

Mz—' i e
6 being the angle between w and .
Now
'u,=1'68125
‘u,c=1'53013
0=1° 12
Whence
w=168182 . . . . . L (4)

The value found by RupBERG 1s 168157.
The difference is considerable, being ‘00025.
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We may note, however, that his values of p; deduced from two different pieces of
crystal differed by -0004.

Now p, is the value of the refractive index for the first prism for the wave E when
¢'=20° 0" 39"
The values of u at about 30" on either side of this are

168578 Table VI., 168589
168574 Table XII., 1°68569
The value

‘u,a=1'68580. C e e e e e e e e (5)

seems to represent these fairly. Let us take it at present, and see how far it gives
consistent results,

RubpBERG gives
M= 1:68589

To verify these results let us find the angle between the optic axes.
If 28" be this angle in the crystal

(1_1)
i
tan &' = 4' 11 ’f
Lud )
Whence \ ‘
¥=904'58" . . . . . . . . . . . (6

and if 28 be the angle in air as seen through a face normal to the least axis of the
crystal

sin 8=p; sin &
whence

$=15°23/30" . . . . . . . . . . D

Kircuorr found 15° 27/ as the result of experiments.
The value given by RUDBERG’S values of the indices is

d=15°7

which differs from KircHOFF'S result by 20, whereas the value given above as the
result of my experiments differs only by 8" 30”.
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Section VI.—Clalculation of the Reciprocal of the Velocity of Wave Propagation on
FrEsNEL'S Theory for the First Prism and Comparison with Experiment.—The
same for Lord RAaYLEIGHS Theory.

We are now in a position to calculate the reciprocals of the velocity of wave
propagation for the first prism on the theory of FRESNEL.

Fig. 7.

Let O O, fig. 7, be the points in which the optic axes cut a unit sphere.

L M the trace of the principal plane of the prism cutting A C" A" in L, B C' B’
in M.

Let N be any point in the plane, in which a wave normal meets the unit sphere.

Let
NO=68 NO'=¢.

CLM=x=1° 12" [Section IIIL. (9)].

sO

cos = cos LN cos OL -+ sin LN sin OL cos X:C;)O
if tan A=tan OL cos .

L
008 (LN—M)

Similarly
0s O'L
cos A/

cos 0= ° cos (LM —N\")
if tan N'= tan O'L cos y.

Now
AO=90°—9° 4" 58" [Section V. (6)]
=80° 55" 2"
AL=2° 381" 58” [Section III. (10)].

OL=78°23' 4" . . . . . . . . . . (1

OL=96°83 . . . . . . . . . . . (9
whence
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A=T78° 22" 55" .
N'=96°33" 5" .

Also P, being the point in which the normal to the face P, meets the éphere

IN=LP 4PN
—LP ¢
LP =67° 27" 25” [Section ITI. (8)].
LN—\=LP,+4¢ —x
—¢'—10° 55 30"

LN—)N=LP +4¢ —\
=¢'—29° 5" 40"

311
(3)
(4)

(5)

(6)

Again, if v; v, are the velocities of propagation in the direction € ¢, we know that

v v =a4*—(a?—c?) cos 0 cos &

v —v,2=(a’—c?) sin 0 sin &

a ¢ having here their usual meanings of the greatest and least principal velocities.

Hence
20 *=0a?4 c*—(a?—c?) cos (0+6)

20 =a’+c*— (a®—c?) cos (—16)

From these formulee we can find v, v,, and thence the values of pu; p, for

Taking

p=153013

¢P= - =351876

P

1
= =-427117

(4
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The Tables XXV. and XXVI. give the results of theory for the first prism.

Let us take the outer sheet first.

In lines 1-12, Table XXV., and lines 1-10, Table XX VI, the agreement between
theory and experiment is falrly close, but these series of expenments overlap and are
in the immediate neighbourhood of an axis of the section.

From this point onwards, we see that the experimental curve lies entirely inside
that given by FresNeL’s theory, and the difference between the two increases as we
approach the neighbourhood of the optic axes, line 16, Table XXV., 14 and 15
Table XXVTI., while for the rest of Table XXV. the differences diminish.

The tables extend from about 8° on one side of the axis C, to nearly 16° on the
other. This is obvious, for between the optic axes 6-¢, beyond them 46" is very
approximately equal to twice N C.

Now let us consider the inner sheet, as before in lines 1-14, Table XXV, lines 1 11,
Table XXVI., the agreement is fairly close ; but these observations extend from about
6° on one side, to 7° on the other of the maximum radius vector of the section. As
in the case of the outer sheet, the differences here increase as we approach the neigh-
bourhood of the optic axes, reaching a maximum of ‘00044, line 15, Table XXVI.

After passing the optic axes, the differences decrease, and for the rest of Table XXV.
average about *00024, and in this case the curve given by experiment lies outside that
given by theory.

On examining the differences given in Table XXV. for the outer sheet, I noticed that
theory and experiment agree closely up to the immediate neighbourhood of the optic
axis, line 16 ; while in the neighbourhood of the optic axis, Table XX V1., line 15, the
increase in the differences is much more gradual.

In fact, if we compare the experimental values of wu, in Table XXV., lines 11-14,
and Table XXVI., 12-15, for about the same values of #+6 we find considerable
differences.

This led me to calculate the results of other sets of experiments covering the same
ground, which had been already made.

The following table gives the results of one such set, taken about two months
previously ; during the interval the goniometer had been taken partially to pieces, and
afterwards refocussed and set again.

It seems worth while to give the whole set of observations which cover nearly the
same ground as Table IL, and form therefore a test of the degree of accuracy of the
results.

The measurements were made at angles of incidence, nearly, but not quite, coincident,
with those of Table II.

In order to compare results, so far as the wave K (inner sheet) is concerned, a
correction by interpolation is necessary therefore.

The values of ¢, it will be observed, differ by about 5 from those in Table II.

In the table, the first column gives the values of ¢'; the second the values of B
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the third those of w (corrected by interpolation for the wave E); and the fourth the
values of u from Table III. ; while the last column gives the differences between the
two sets.

Comparison of values of u deduced from two independent series of observations at an
interval of about two months. '

TasrLe XXVIL-—Wave O.

@' M
1 16 27 16 1-68131
2 17 32 15 1:68127
3 18 36 18 1:68128
4 19 39 22 1:68126
5 20 41 22 1-68129
6 21 42 8 1-68120
7 22 41 41 1-68128
8 23 39 55 1:68125
9 24 36 48 1-68116
10 25 32 b5 168127
11 26 25 51 168116
12 27 17 37 1-68130
13 28 8 10 1-68116
14 29 32 20 1-68127
15 28 56 42 1:68106

TasLe XXVIIL continued.—Wave E.

Values of p Values of p from
, reduced to the values |Table I1I. corresponding | Excess of the first series
@' M of ¢/ in Table IL. by | to the same values of ¢’ over the second.
interpolation. as in previous column.
29 19 59 1-68108 1-68115
29-43 27 1-68066 168075 1:68073 00002
30 616 1-68029 1-68038 1:68032 00006
30 28 56 167991 1:68000 1-67996 00004
3112 9 1:67905 167914 1:67918 —-00004
31 53 13 167828 1-67837 1:67841 —-00004
32 32 10 1-67743 1-67752 167756 —-00004:
33 828 1:67668 1:67678 167674 00004
33 42 29 1-67590 1:67600 1:67591 00009
34 13 53 1:67508 1:67518 1:67519 —-00001
34 42 22 167450 1:67461 1-674:50 -00011
35 827 1:67368 1-67380 1'67388 —-00008

Taking the observations for the wave O first, we observe that they do not differ
greatly from those given for the same values of ¢ in Table II., except in the case of
those which correspond to lines 12, 13, 14, of Table I1I., at which points the new values

28 2



316 MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL.

of u, are greater than those given in Table IIL, and agree better with the observations
in the neighbourhood of the other optic axis.
Another set of measurements in the same neighbourhood gave as values of w,

1-68124 168131
1-68123 1'68125

Hence, on the whole, it seems likely that the results of the observations given in
Table III1., lines 12, 13, 14, are too small, and that an error has been made in the
measurement at that point, owing to the indistinctness of the images which nearly
overlapped, so that we may fairly replace Table II., lines 12, 13, 14, by Table XXVII.,
lines 12, 18, 14, and instead of the results of Table XXV. referring to these we shall
have

1, Theory. 1, Experiment. Difference.
168114 1-68130 00016
168104 1-68116 ' 00012
] 1-68096 1-68127 00031

This modification renders the results similar in the neighbourhood of the two optic
axes.

Let us now consider the results given in the latter part of the table for the wave K.

The two sets of observations there recorded were made under entirely different
circumstances. The telescope and collimator of the goniometer were removed in the
interval between them, and both reset and refocussed ; and yet in but one case is the
difference between the results of the two observations as great as *0001, while the
average difference, irrespective of sign, is about ‘00005.

This comparison forms a strong test of the accuracy of the experiments, and the close
agreement of the results seems to show that the error in them is at any rate not greater
than *00005.

It would appear that more trustworthy results might have been obtained by com-
bining the series of results registered in this last table with those discussed throughout.

But experiments covering the whole ground embraced in the series we have chosen
had not been made at the same time previously.

Moreover, we must recollect that each value of ¢ and D4, given in Tables I., IV.,
&c., is the mean of three for the first prism and of two for the second.

And, again, this comparison assures us that the difference between the results of
experiment and theory amounting, as it does in some cases, to 0005 in the value of g,
is far too great to have arisen from experimental errors or errors of observation.

It seems, then, that assuming the position of the plane of the prism, and the
values of the principal axes to be accurately determined, we may assert that in a
central section of the wave surface inclined at a small angle to the plane of the optic
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axes, there is considerable difference between FRESNEL’S theory and experiment : that
the differences between the two are most marked in the neighbourhood of the optic
axes, and amount there to ‘0005 about. For the outer sheet of the surface (except
just in the neighbourhood of the principal axes), the theoretical values of the radius
vector are uniformly greater than the experimental, while for the inner sheet the
reverse is the case.

- In fact, the curves of section of the surface, as given by experiment, approach more
nearly to one another than those of the surface of wave slowness on FRESNEL'S theory.

Tig. 8.

In the above figure, fig. 8, the dotted line gives the result of experiments, while the
strong line gives the form of the section on FRESNELS theory.

To compare the results with those given by Lord Ravrereu’s theory, we have the
equation to the surface, a, b, ¢ being the principal velocities,

? m? n?
=0
Ve -+ v: + V2
R

1 . .
Put V= -, r is a radius vector of the surface of wave slowness
7

a’l? b¥m? cn?
e

1= T 1

=0

1—c%
Let us suppose as a first approximation that m=0, z.e., that the plane of the prism

is coincident with a principal plane of the crystal,

(1 =) +c*n*(1—a?) =0

ra*=a*l’+4%n®

Also I= cos 0, n=sin 0
6 being the angle between 7 and the maximum radius vector
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1 /1 1\ .
749—~—< ——5> sin® 0
>

T\
1 ‘
S=284192

1
- ——=2'50062.
4 a

From these and the known values of 6, u or » can be calculated. The table gives
the result. '

Comparison between Lord Ravreica’s Theory and Experiment.

6. p Theory. 1 Experiment, ]E‘fgf S}?};);erli‘];liﬁg
1311 1:68570 1:68568 . 00002
8 25 33 1-68261 168190 00071
11 6 40 1-68028 167918 00110
14 9 48 1-67688 167519 00169
15 48 28 1:67476 1-67274 00202

The differences between theory and experiment are so marked that it seems un-
necessary to calculate the values of p for smaller intervals in the values of 0.

And though some of the apparent difference may be due to the error made in
assuming the principal plane of the prism to coincide with one of the crystal, that
cannot account for the whole; for we have seen that in FRESNEL’s surface the error
made by the same assumption appears only in the fourth place of decimals, in the value
of the refractive index, while the differences between Lord RAYLEIGHS theory and
experiment show themselves in the third place, and tend to increase with .

Thus it seems clear that Lord RavLeicH’s theory will not account for the phe-
nomena of double refraction in arragonite. This result agrees with that arrived at by
Professor StoxEs for Iceland spar.

Section VII.—Effect of Varying Constants of Theory and Position of Plane of Prism
with reference to Awxes of Crystal.

Tt remains now to discuss the effects of variations in the values of the axes a, b, c.

The values of ¢ and b are determined directly from observation, and in the neigh-
bourhood of these axes the agreement is most close. Any alteration in them would
affect especially that part of the section which lies between the optic axes, and for
which the differences between theory and experiment are least; let us consider, there-
fore, a variation in the value of a.
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Such a variation would produce an alteration in the angle between the optic axes,
and therefore in the values of 8, ¢’ for any wave normal.

If, however, we take a wave normal at some distance from the optic axes, the values
of 0, ¢ will be altered by nearly equal amounts in opposite directions, and 6+ 6" will
be nearly constant.

Let us then find the value for ¢ in order that the experimental value in line 29 of
Table XXV, may agree with theory.

We have

20 =+ *— (a*—c?) cos (0+0)

=a*{1— cos (04 ¢)}
4+ {14 cos (64+6)}
0+0

v,*—c? cos’

6+0’
2

R

sin?
1

V=
M1

p=167274
0+ 0'=381° 45" 40”
c*="351876

From these we get
a®="447553

as against 427117, and the value of p, is

Moo= 1-49478
instead of 153013

A reference to the tables for the second prism shows at once the impossibility of
such a change.

It is true that any decrease in u, would produce a decrease in the angle between
the optic axes. This would increase 6’ and decrease ¢ by nearly equal amounts, and
on the whole produce a small decrease in 6+ ¢".

This change would decrease v, and therefore increase u,, and hence to produce the
required change in w,—.e., to make u, equal to the experimental value in line 29—we
must take a value for p, larger, but only slightly larger, than that given above.

There remains now for discussion the effect of a variation in the position of the
plane of the prism with reference to the crystallographic axes.

We shall consider this by discussing separately the effect of a votation about each
of three lines through the centre approximately at right angles. These lines are
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(1.) The normal to the principal plane of the prism; (2.) The intersection of this
plane with the plane B C B’; (3.) The intersection of the principal plane with the
plane A C A",

(1.) Rotation about a normal to the principal plane of the prism.

This cannot produce the required effect, for though we can thus decrease the
differences on one side of the maximum radius vector of the section, we increase those
on the other side by about the same amounts.

(2.) Rotation about the intersection with B C B’.

This is of no use, for the effects produced on opposite sides of the maximum radius
vector are again of an opposite kind.

(3.) There remains, therefore, only the rotation about the line of intersection with
the plane C A (7, or a variation in the angle x. This change is to be such that the
sections of the outer and inner sheets may be brought into closer proximity; y must
therefore be decreased.

Now on referring to the tables of the experimental results, it will be seen that none
of those in Table III., lines 1-11, Table VI., lines 16-29, and Table 1X., lines 1-16,
differ greatly from 1-68125.

If it were then permissible to neglect the angle x, this would be the value of u;, and
the other section would be on FRESNEL'S theory an ellipse of w, .

In the abstract published in the ‘ Proceedings of the Royal Society,” No. 188, 1878,
this has been done, and a limit assigned to the error thus introduced.

Professor STorES has since pointed out that near the optic axes the limit is con-
siderably too small, and thus Jed me to the accurate calculation of the theoretical
values of uy, u, given above.

The effect of a decrease in the angle x may, therefore, be estimated by referring to
the calculations for the case in which we put x=0.

The accompanying table gives the results. 6 being the angle between the wave
normal and the major axis of the ellipse, which is given by

I=¢'~0,

where 6, is the angle between the normal to the face of the prism and major axis,

and is
=20° 0" 40” [Section V. (2)]
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Tables from

Excess of

n‘;‘;l;:tcﬁ f’:splﬁ?.is 0. ror p from Theory. ZE‘.:?;eI: $g$ Experiment
taken. over Theory.
XTI. 8 25 38 1-68193 1-68204
» 8 445 1-68224 1-68223 -1
” 72111 1-68284 1:68277 -7
” 6 35 31 1-68342 1-68333 — 9
" 5 47 55 1:68396 1-68386 —10
» 4 58 26 1-68444 168439 )
. 4 7 22 168486 1-68480 — 6
V. 3 42 55 1-68504 168500 — 4
XI. 3 14 28 1-68522 1-68517 -5
V. 2 38 14 1:68542 168540 — 2
XL 2 20 10 1-68550 1-68541 -9
V. 1 34 26 168566 1-68570 + 4
XI. 123 23 1:68570 1-68560 —10
V. 031 31 1-68578 1-68578 — 0
XT. 027 12 168578 168569 -9
V. 0 30 15 1:68578 168589 +11
- XTI 0 31 18 168577 168574 — 3
XI. 131 3 1:68567 1:68570 + 3
V. 13110 1:68567 1-68568 + 1.
” 2 30 43 1-68544: 1-68560 ..
XT. 2 31 48 1-68544 168539 )
V. 329 17 168515 1-68517 + 2
XT. 3 33 40 168510 168502 — 8
V. 4 26 32 168472 168467 — 5
» 5 22 18 1-68422 1-68421 —1
” 6 16 31 1:68367 1-68376 + 9
” 7 925 1-68300 1-68302 + 2
2 8 0 38 1-68230 168226 — 4
” 8 25 33 1-68194 1:68190 — 4
) 850 1 1:68156 1-68153 -3
IT. 9 14 14 1-68118 1-68131 ..
» 9 37 36 168077 168073 — 4
» 10 0 40 1'68037 1-68032 -5
’ 10 23 7 167997 1-:67996 — 1
” 11 6 40 167914 1:67918 + 4
. 11 47 59 1-67831 167841 +10
” 12 27 8 1-67748 1:67756 + 8
» 13 3 53 167666 1:67674 + 8
» 13 38 11 1-67587 1-67591 + 4
” 14 9 48 1:67511 167519 + 8
’ 14 38 44 167439 1-67450 +11
” 15 451 1-67373 1-67388 +15
” 15 28 8 167310 167328 +18
” 15 48 28 1:67250 1:67274 +24
2T
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For about 10° on either side of the major axis (the passage across which is indicated
by the dark line in the table) the results of theory and experiment agree fairly well.

The average difference irrespective of sign is (if we neglect the values for §==2° 30" 43"
and for §=9° 14’ 14", which gives a point on the circle of radius 1-68125) 000047,
and only in two cases does the difference amount to ‘0001.

But when we come to values for § greater than 11° we see that the experimental
value of u is, as before, always greater than the theoretical, and that the difference
~increases with 6, and at last becomes nearly the same as in Table XXV.

Thus this change does not produce agreement between the two.

We may, however, consider shortly what alteration in u, would in this case bring
theory and experiment more closely into agreement.

We have
cos®@  sin®d

,l-l/u2 /1,52

L
w
L
. '.8,@:;/:3 sin*OSu,

Taking the last values on Table XXVIII.

8[.[,: ‘00024
§=15° 48’
= 167274

pe=153013

‘Wheunce
u="00248

so that the minor axis of the ellipse, which having the same major axis as the experi-
mental curve would pass through the extreme experimental point, is

p=153261
instead of , 153013

And on referring to Table XX1I., which gives the values of u. very approximately, we
see that this value is quite out of the question.

Thus a decrease in the angle x will not produce the required effect.

Neither will an increase. For the first part of the inner sheet in Table ITI., and
throughout Table IX., we must have the theoretical value of w, and therefore of 06’
nearly constant; and this is clearly impossible along a plane section inclined at a finite
angle to the plane of the optic axes.
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Thus a change in x will not render theory and experiment consistent.
Thus no change in the position of the plane of the prism will bring FRESNEL'S theory
into agreement with experiment.

Section VIIL.—The Theoretical Investigations for the Second Prism on FRESNEL'S
Theory with Comparison with Experiment.

Our next step is the theoretical investigation for the second prism.
Now experiment has shown that this prism lies in the twin crystal ; we must
therefore find the axes of this crystal.

TFig. 9.

Let the figure represent a section of the crystal by a plane perpendicular to the axis
0C, o

The twinning takes place about an axis perpendicular to m’, and consists of a
rotation through 180° about that axis.
- Its effect, therefore, is to bring O B, fig. 9, into the position O B’, where

angle mOB=mOB’

that is, to turn the axes in the direction B to A, through an angle,

::2(m0B).—=2<72Z—AOm>
=7—2u=180"—116° 56
=63° 4

and if Q is the point where the perpendicular on the face Q of the second prism meets

the sphere, we know that
AQ=45° 380" [Section IV. (1)]

Hence since AA’=63° 4" and Q lies in plane A O B,
AOQ=17°384. . . . . . . . . . . )

Now let A’ B’ C, fig. 10, be the points in which the new axes cut the sphere, and let,
2T 2
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P Q M be the plane of the prism; P being any point in the plane; Q the normal to
the face, and M the point in which the plane cuts B" €V, O, O’ the optic axes.
Then if P is the pole of any wave in the crystal, PQ=¢'".

Fig. 10.

Let PO=0, PO’=¢, we shall require the values of 0, ¢
Now in triangle A’ M Q
angle Q=4° 87" 20” [Section IV. (4)]
A'Q=17° 34
cot MQ= cos Q cot A’Q
whence

MQ=17°87"14" . . . . . . . . . . (2

Let A’ M Q=x.
Then from triangle A" M Q,
cos M= cos QA’ sin Q.

whence
x=85°35"40" . . . . . . . . . . .(3
Now,
cos 0'= cos PM cos MO’+ sin PM sin MO’ cos
= cos MO’(cos PM + sin PM tan MO’ cos x)
put

tan MO’ cos x= tan N

, M ! COS 2\
cos 0 = MMW)}C) . .o . i . . ) (4)

cos N
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Similarly

cos f— cos MO cos (PM42) N 1
cos A
where
tan A=tan MO cos y
Now ‘
AO=A'0'=90°—9° 4’ 58" [Section V. (6)]
=80° 55" 2"
From triangle A’ M Q
sin A’M= sin MQ sin Q

‘Whence
AM=1°28'52" . . . . . . . . . . (6)
o MO=79° 31 10", . . . . . . . . . (7)
MO'=82°18'54". . . . . . . . . . (8
Hence '
N=22°88'27. . . . . . . . . .. (9
N=29°39"5" . . . . . . . . . . (10

PMA4N=¢"4+QM 4\
=¢'+40°10°167. . . . . . . . . (11)

PM—N=¢'+QM—)\
=¢'—12°U'51” . . . . . . . . . (12)

Substituting these values of A\, MO, PM ), &c. (the values of ¢’ being taken from
Tables XIV., XVIL, and XX.), in equations (4), (5), we can get a series of values
for @ .

And as before [Section V1], remembering that 6" here is 7— 6" in Section VL,

20 = a4+ (4 — ¢?) cos (6—6)
20y =0a’+ ¢’ (a®—c?) cos (4 9)

Thus we obtain a series of values for v, v, and hence for u,, p, given in
Table XXIX.

To obtain the distance of P from the minimum radius vector, we have to add to ¢’
the angle M Q=17° 387" 14” [Section VIIL (2)]
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Considering first the inner sheet, we see that theory and experiment agree closely.

The greatest difference is *00013; and in this case, by referring to the adjacent
experimental values, it is clear that the value 1'53003 is too small.

We must remember, however, that the investigations are concerned with that sheet
of the surface of wave slowness of which the section by the plane, x ¥, is a circle, and
that the section considered is inclined at an angle less than 5° to this plane; so that
the form of the curve of section differs but little from a circle, and we may therefore
reasonably suppose that any theory in which one of the principal sections of the
surface of wave slowness is a circle, would also agree fairly closely with our results.

We therefore proceed to discuss the results for the outer sheet given in the table
just preceding.

And here we see at once that there is considerable difference between theory and
experiment.

Moreover, from ¢'=12° 16" 53" to ¢'=20° 5" 38", the theoretical values of w are
uniformly greater than the experimental; while from ¢'=20° 35" 20" to ¢'=31° 42" 84"
the reverse is the case. k

The difference between the two increases on the whole uniformly, and in the last
case is as great as "0005.

For the values ¢'=19°13"4" and ¢’=20° 5" 38", theory and experiment agree closely.

To find the angle between any radius vector and the minimum one of the curve, we
have to add to the value of ¢’ the angle M Q, which is 17° 37" 14",

Let us call the angle Q O P, 6.

Then we see that for the angles #=0, 0=37° (about), and §=90° the curves given
by theory and experiment agree.

From 0=29° 54" 7”7 to 0=37° (about), the theoretical curve lies outside the
experimental.

From 0=387° (about) to #=49" 19" 48” the reverse is the case.

In the neighbourhood of the axes the two must agree more closely.

These conditions would all be satisfied by a curve which agrees with FrESNEL’S
section at the extremity of the minimum radius vector; lies inside it for about 40°;
then cuts FRESNEL'S curve again, and lies outside for the rest of the quadrant, agreeing
again at the extremity of the maximum radius vector.

At first sight there seems some discrepancy between this result and that arrived at
already in Table XXV. for the first prism.

But closer examination shows that the two results are corroborative.

For, in the first place, the observations there tabulated apply to the neighbourhood
of the major axis of the elliptic section.

For about 6° on either side of this principal axis, the differences between theory and
experiment are sometimes positive, sometimes negative ; that is, between these limits
FRESNEL'S section satisfies the results of experiment; but in the last eighteen
observations there recorded, the experimental value of w, is always greater than the
theoretical.
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Thus the experimental results are represented by a curve, which near the major
axis agrees with FRESNEL's section, but which, as we go from 6° to 16° away from
that axis, differs from that section, and lies outside the section.

This result, viz.: that on going away from the maximum radius vector the curve
given by experiment should lie outside that given by theory, is exactly that to which
we have been led by the work for the second prism.

The cutting of the crystal would not allow of observations being taken near the
minor axis of the ellipse, in the case of the first prism.

Of course, it has here been assumed that the sections of the surface of wave
slowness, by the principal planes, are curves of the same kind ; or rather the results of
experiment lead to that as a fact.

Lord RavieieH's theory needs no further discussion here, for his curve being the
inverse of an ellipse, always lies outside the ellipse with the same axes, and therefore

cannot agree with experiment.

Section IX.—Possibility of an Error in the Position of the Crystallographic Awes
discussed.—No Section of the Surface of Wave Slowness in FRESNEL'S Theory can
agree with the expertmental Results.

But the possibility remains that there is an error in the determination of the posi-
tion of the faces of the prisms, especially in the second case, with respect to the
crystallographic axes.

The probability of any error is small, as the observations were repeated on several
different occasions with nearly coincident results.

To make certain, however, let us solve the inverse problem. Having given the two
values, u, pg, of the radil vectores of the surface of wave slowness drawn in the same
direction I m n in the crystal to find I, m, n.

We have as the equation to find v on FrRESNEL'S theory

2 mh n?

+ 7)2—-272+

02=O

»?R—a? % —

Whence
,U4« —_ ,02 { lZ (b2 + 02) +m2 (CQ_I_ a‘;’a) + nQ(aﬂ + b%) } + leb‘ZC2 +77’Lz(32&2 _l_ n2a2b2= 0
.. if v, v, are the roots of this equation, that is, the velocities for the same wave front
20, = PO mPcPa+nab?
v 2o lt=P(0%+ &)+ m*(*+ o?) +n*(a*+b?)

but n*=1—m?>—1?

Whence we get

DR(c?—a?) + PP (P —b) = v, 20,2 — aPb?

B(c?— a?) +m(?— Y =v *+-v,' —a?—b*
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‘Whence
Pl — ) =) = (=) (=)
m*(b?*—c?) (*—a®) = (b*—v) (b*—v,?)

12 (0 ) (O — ) = () (P — )
From the tables for the second prism, we see that for the inner sheet for

’ ’ //1
¢'=28° 11’ 21" ~=153021
1

‘For the outer sheet,
$'=28° 1’ 21" 7}1:1'68391

2
Since the value of v, changes very slowly, we may reasonably treat these two values
for ¢ as coincident, and substitute in the above formulee.
We find
costn,=49° 35
cos™! m;=40° 27’
Again, for inner sheet for
1
¢=388° 2 41" ~=1:53037
) .
For outer sheet

’ o ’ //]- 3
¢'=31" 42" 34 ;:1'68437

2

Treating these two as coincident, we find

cos™! ny,=>55° 44
cos™l m,=384° 238’
For inner sheet for
; 1
qS':QGO 5 11” 5—:1’53028
1
For outer sheet

¢'=26° 19’ 10” 5—:1'68378
2
‘Whence

cos™! ny=47° 56

cos™tm,=42° §

We may justify the treating of the two values of ¢ as the same, by the considera-
tion that w, varies at the rate of 00001 (about) for 1°, and therefore the difference for
20" is inappreciable.

Now the angle between the radii vectores in the first and second case cannot be
less than

MDCCOLXXIX. 2 U
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cos™ ny—cos™! n;
e,
not less than 55° 44’ —49° 35

or 6° 9

But the angle between these radii is the difference between the two corresponding
values of ¢, or
=31° 42/ 84”—28° 1" 21”
= 3° 41’ 18"

Again, taking the second and third, the angle deduced from theory is not less than

cos™t ny—cos™! n,
or 55° 44’'—47° 56’
or 7° 48’
but from experiment it is
31° 42" 34" —26° 19 10”
= 5° 23" 24"

In both these cases the angle, as given by theory, must be very much larger than
that given by experiment.

Thus, in order that the three pairs of values of u, p, may correspond to three radii
of the surface of wave slowness on FrESNEL'S theory, the angles between them must
be half as large again as they are found to be.

Hence no section of the surface of wave slowness on FRESNEL'S theory can agree
with the results of the experiments. We may remark, in addition, that the differences
between consecutive values of u for the outer sheet given by experiment are about
double those given by theory.

After this investigation it seems needless to discuss possible alterations in the posi-
tion of the plane of the second prism, with a view to bringing the results of experi-
ment more nearly into accordance with theory. While as regards the constants a, b, ¢,
it has already been seen that they have received their most probable values.

Thus our results, so far as they go, point to the fact that FRESNEL'S construction
does not represent Nature, and that some other theory must be sought to explain the
phenomena of double refraction.

And as regards the rival theories already proposed, Lord RAYLEIGHS, we have seen,
is even more than FRESNEL’S at variance with observed appearances, while I can hardly
think that sufficient data have yet been collected to repay the labour of comparison
with the theories of GREEN and CAvucHY, for on account of the undetermined constants
it would be necessary to force theory and experiment to agree in so many points that
they must, perforce, almost agree exactly along the small arcs investigated.
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PART IL
Section I.*—Description of a Second Crystal and Results of Experiments.

Before asking permission to lay the results obtained in the previous part of the
paper before the Society, I thought it would be better, if possible, to repeat the inves-
tigation with a second piece of the crystal. With some trouble I obtained a suitable
piece last February from A. HiLgER, of Tottenham Court Road.

Like the former piece, it was an hexagdnal prism in shape, but of considerably
smaller cross-section.

The axis of the prism was parallel to the axis of ¢, the base being perpendicular to
the axis, while the top was broken off obliquely.

The planes m, m" gave the best reflexions, and were therefore chosen to determine
the position of artificial faces.

My chief aim in having the prism cut was to get as long a continuous arc on the
wave surface as possible. To attain this I had a face R, fig. 2, polished as nearly

coincident with ¢ as possible.
Fig. 2.

The oblique end was cut (P, fig. 2) so as to be inclined at about 87° to R, the edge
of the prism thus formed between P and R being nearly parallel to the intersection of
m and c.

* N.B. The two Parts being quite distinct, the numbering of the Sections and Figures is commenced
afresh with Part II.
20U 2
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The face m, was cut so as to be inclined at about 35° 20" to P, the line of inter
section of this face (Q, fig. 2) and P being also nearly parallel to that of P and R.

So that the principal planes of the pl“isins formed by P and R, P and Q respectively,
were nearly coincident, and as my observations extended almost from perpendicular
incidence on Q to perpendicular incidence on R : they embraced an arc of over 70°.

The instrument used and the methods adopted for levelling, reading, &c., have been
fully described in the previous part of the paper.

The results of the experiments are contained in Tables I., IL., III., and IV.

Tables I. and II. refer to the prism R P.

¢ is the angle made by the wave normal in air with the normal to P.

¢’ the corresponding angle in the crystal.

D is the observed deviation.

¢ the angle of prism.

D+ is given, for it occurred in the caleulation, and was just as easily found as D.

The value taken for ¢ is

1=37° 2 56”

This value is the mean of twelve observations, none of which differed from the mean
by 10”.
¢’ is found from the formule ¢'+'=1
S AN SR b o AN - S 4
7 _tan2cot 5 tan 3

and tan

which has already been proved (Part I., Section I.).

In Table I. ¢ is the same for both outer and inner sheet, being the angle of
incidence.

In Table IT. ¢ has different values for the two sheets, being the angle of emergence,
for as already explained, on passing through the position of minimum deviation, the
prism was reversed so that the face of incidence became that of emergence.

Throughout the work p, refers to the inner, pu, to the outer sheet.

The values of 8¢, u are calculated as before on the assumption of errors of 10” in
2¢ and D7, the observed quantities taken ; these errors being combined so as to
produce the greatest possible effect in the result.

Tables 1I1. and IV. refer to P Q, for which 1=2385° 18" 50".

The symbols have the same meaning, but while in I. and II. the wave normal falls
on the same side of the normal to P as the axis O C, in III. and IV. it is on the
other side of O P. ,

In III. ¢ is the angle of emergence, and therefore different for the inner and outer
sheets; in IV. it is the angle of incidence, and the same for both.

Each observation was repeated twice on different occasions; the results of two
measurements rarely differed by 20".
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Section I1.—Determination of the Position of the Planes of the Prism P R’ with
reference to the Axes of Elasticity.

In order to compare these results with theory we require to know accurately the
position of the principal planes of the two prisms. We will consider the prism, faces
P R, first.

Let O A, O B, O C be the directions of the principal axes of the wave surface, O B
bisects the angle between the faces m m’, O C is parallel to the intersection of these
faces. ‘

Let the normals to the faces m m’ cut a unit sphere, centre O, in M M’, the normal
to the face P in P, and the normal to R in R.

Let the direction angles of P and R with reference to A, B, C be «; 8, yi, @, B, v,
respectively.

[P lies in quadrant A B C, Rin A’ B C".]

Fig. 3.

Let
PM=¢,, PM'=6/
RM =6, RM'=6,’
Observations on the angles between P and m, P and m’ give 6,, 6’ respectively.
While observations on the angles between R and m, R and m' give 6,, 6, respec-
tively. v
Let
MM'=2u=2MB.
Then, as in the first part, from triangles M’ B P, M P B we get
o+6  8/—6,

cos cos
2 2
cos By= Y R 0 )
sin o'+, sin 6/=6,
2 2
cos o, = o R 3

with similar formulee for B, a,.
MDCCCLXXIX. 2 X
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All the angles 6,, 6/, 0,, 8,, and p were observed several times throughout the

work.
The mean of the observations give

L =54° 17" ¢". (3)
6,’=75° 16" 20" (4)
g,=8840"35" . . . . . . . . . . (5)
0, =88° 20" 20" (6)
p =31° 53’ 30” (7)

In no case was the difference between the mean and any one of the observations so

great as 20”.

Substituting these values we find
o, =71° 49" 30" |
1:600 25/ 49// (10)
0y =90° 19" 10"
ﬁ2=880 14/ 32// (11)

Also
sin® y, = cos® a4 cos® B,
sin® y,= cos® &, cos® B,
whence
yi=35°42"57" . . . . . . . . . . (12)
T—y,=1°47"11" . . . . . . . . . . (13)

Let R O meet the sphere again in R’, and let the figure represent the sphere as seen
by an eye on O C produced.

Fig. 4.
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We have now sufficient data to calculate the angle R’ P.

CP=y,
AP=«,
BP=g,
CR =mr—v,
AR =7—a,=89° 40" 50"
BR'=8,
From triangle B” A R/
cos B'R'= cos BAR sin AR’
s.cos BAR' = :fj i}?’
__Cos By
sin o
whence

B'AR'= 88° 14" 32"
. RAC= 1° 45" 28”
From triangle C A P
cos CP= cos CAP sin AP
cos CP
sin AP
.. CAP= 31° 17 20"
- RPAP=33° 92 48"

.. cos CAP=

From triangle R" A P
cos R’P= cos R’A cos AP+ sin R'A sin AP cos R°AP

= cos (m—a,) cos o+ sin (m—a,) sin &, cos R'AP
whence ,
R'P=387° 2 53"
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But R'P can be measured directly, the mean of twelve observations, none of which

differed from the mean by 10”7, gave
RP=37°2" 56"

The close agreement between these results confirms the accuracy of the values of

o, B, &c.

Let P R cut C A in L, we proceed to determine C L, R’ L, and the angle A L P.

From triangle A R" LL

cot AL sin AR'= cot AR'P sin R’AC+ cos AR’ cos R'AC

.. cot AL sin ay= cot AR'P sin R’ AC+ cos a, cos R'AC
2 X 2
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we have seen already that
R’AC=1° 45’ 28"
For A R’ P we have

gin AP ,
s ipsin WAP

S ARP=59° 18" 37"

sin AR P=

Un substituting we get
AL=88" 38" 18"

SOL=1°21742" . . . . . . . . . (15)
For R’ L the triangle R" A L gives
. sy SinR‘ALsin AL
sin RL=—2"%T,

whence

R'L=2° 2" 37"
For A L P the triangle A L P gives

sin AP

sin ALP= s sin LAP
ILP=RP—RL=35°0"19". . . . . . . . (16)
‘Whence
ALP=59°20"11" . . . . . . . . . (17)

Thus we have determined the position of the plane R’ P completely.

Section IIL.—Determination of the Position of the Plane P Q with reference
to the Principal Planes.

Our next step will be to determine the position of P @, Q" being the point in which
Q O produced backwards cuts the sphere.

Let the direction angles of O Q' be ag B; v,



MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL.

Let
MQ =6,

Q=0

then

cos B3= o m

. 0,40, . 6,—6,
Sin 9 Sin 2

cOS

COS oy =

But 6;, 6, are the angles between the faces Q and m, Q and m’ respectively.

And observation shows that
0,=19° 0 15”}
6, 64°37" 0"
Whence
,=35° 58 41"

0, =60° 42 56"
A COS oy
cos QBA= sin B,
Q'BA=33° 37’ 51"
cos CQ'= sin BQ' sin Q'BA
s =C0Q'=71° 0" 44”

To corroborate these values let us find P Q" and compare with experiment

cos QAB= o3 s

sin ay
SQAB=21° 54’ 12"
But we know from the previous work (Section IL.) that
PAB=90°—PAC=58° 42’ 42"
~PAQ=36° 48’ 30"
cos PQ'= cos AP cos AQ' 4 sin AP sin AQ" cos PAQ

Whence
PQ'=35° 18" 35"

The mean of a large series of experiments gave
PQ=35° 18" 50"

and again we have strong evidence in favour of the correctness of the work.

341

(3)

()

(6)
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Let the figure, as before, represent the sphere as seen by an eye on O C produced.

Fig. 6.

Let Q" P produced cut C A in I we proceed to determine C L/, P 1., and P 1" A.
From the triangle I A P

cot AL’ sin AP= cot APL'sin L'AP+ cos AP’ cos L’AP
From triangle P Q" A
sin AQ" . ,
snpQ S PAQ

m—APL/=64° 41’ 28"

sin APL'=

Also
LAP=CAP=31° 17" 20"
[Section II. from previous work. ]
Substituting these values we get

AL/=88" 44’ 20"

OL'=1°15"40" . . . . . . . . . . (7
The triangle A L P gives
oo sinAP | ,
sin AL'P= AL Sin APL
whence
ALP=59°182" . . . . . . . . . . (8
Also
. v SAL Lo
sin L'P= <in APD B L’AP
whence
LP=35°8 14" . . . . . . . . . . (9

To corroborate these results draw L K perpendicular to P L/, then L K L/ is
approximately a right-angled triangle, and angle LI/K=60° nearly.
Hence
L’'K=3LL’ approximately
Now L’K=PL/—PL=3" approximately
LL'=CL—CL'=6" approximately
-~ L’K is equal to $LL
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Section IV.—General Theory.

To apply these results to the theoretical calculation.
Taking the same figure

Fig. 7.

Let the optic axes cut the sphere in O O; consider a plane cutting the plane A O C
hetween C and O” in L say; let N be any point on it; let NLA=y, NO=6, NO'=4¢".

Then we know that if v, v, are the velocities along the wave normal through N,
a, b, ¢ the principal velocities, o being the greatest

v —0=(a?—¢?) sin O sin ¢’

v 240 = (a*+ ¢?) — (@*—¢?) cos 6 cos ¢

wP=(a*+c*) —(a®—c?) cos (0+0) . . . . . . . (1)
202 =(a+c?) —(a®*—c?) cos (0—0). . . . . . . (2)
We require, therefore, the values of 6 and #.
Now
cos = cos OL cos LN — sin OL sin LN cos x
= cos OL(cos LN — tan OL sin LN cos x)
cos OL )
e — cos(LN-+XN) . . . . . . . . . . . {3
if tan A= tan OL cos y
Similarly
,__ cos8 O'L Y
cos = oos os (LN=X) B )]
where

tan M= tan O’L cos .

Thus to use the formuls for v,, v, we require to know accurately the position of the
optic axes.



344 MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL.

These can only be determined by finding the values of a, b, c.
The results of the experiments enable us to do this with considerable exactness.
Let pa 2, pe be the principal refractive indices, u, being the greatest, p, the least

1
Poe="
1
pr=7
1
o=

Section V.— Values of the Principal Refractive Indices.

We are now in a position to determine from our experimental results the values of
a, b, ¢ the principal velocities.

The plate P R’ cuts the plane A C at a short distance from C.

The section of the surface of wave slowness by the plane A O C consists of a circle
of radius y; and an oval curve of axes u, and p, in the directions O C, O A respectively,
which for a small distance on either side of a principal axis may be treated as an
ellipse; as in FRESNEL’s theory.

Also, if L be the point in which P R’ cuts the plane A O C

. LP=35°0" 19"
[vide Section II. (16)].
The value of u corresponding to a value of ¢'=35° 0" 19" in Table I. for the inner
sheet will thus be the value of w,.
But we have as corresponding values

¢ 2
34° 28" 43" 1'68115
34° 53’ 57" 1-68114
35° 16" 207 168115
we may therefore take
jy=168115,

The values of the radius vector to the outer sheet in the same neighbourhood are,
Table 1., lines 4 and 5,

¢ I
34° 47" 54" 168546
35° 10" 17 1:68553.

For
¢'=35°0" 19"
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we may take therefore
p=168550

This then must be the length of the radius vector of an ellipse, axes u, and p,, which
passes through the point L—-i.e., which is inclined at an angle CL=1° 21" 42” to the
axis p, [vide Section II. (15)].

Now if 0 be the angle which a radius vector » makes with the axis u,

1 cos?@  sin?6

PE PR

7,'—2—-
1n the case considered
0=1° 21’ 42"
sin? #=-000565

and the error made in giving to p, an approximate value will be inappreciable.
Let us take, therefore, for u, the value found in the previous part which agrees with
RupBERGS value _
1 =1530183
n?
0000241

5 —
(4

Now
r=168550

L 351919
Vs

11 <1 sin20>

ma cos® O\r* &

whence
jt=1-68560

Tt now remains to determine u, accurately.

The natural faces a, m,” (fig. 1) formed a prism whose edge was parallel to the axis O C.

By passing light through these faces and observing the incidence and deviation as
before, I was enabled to calculate p..

To pass light through these faces it was necessary, however, to polish them, and this
operation altered their position appreciably. The values obtained by direct measure-
ment required a small correction, and to calculate this it was necessary to determine
the position of these new faces.

Let the faces approximately coincident with @, and m,” be called X Y respectively.
On levelling the faces of reference m m/, I found that Y remained very nearly in the
same zone as before, viz. : that of m m' m m,; while X fell rather below this zone.
Observations on the angles between X and Y and the faces m m’ respectively gave

MDCCCLXXIX. 2 Y
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XM (=6, say)=1238° 32
XM (=0, say)= 59° 52’
arc YA'M (=0, say)=117° 17’
(

Since Y, M, M/, are in one zone with A and B, and B bisects arc M M’
2BA'Y=M'A'Y4+MA'Y
.".arc BA'Y=149° 10’
A'Y=149° 10"—90°
=59° 10’
Let oc;,&& v be the direction angles of X.

Then, as before, [Section II. (1)]
0,40, . 0,6,

sin —*—Fsin —*5
COS o= &e.
COS W
whence
a,= 3° 28" 50"
B,=91° 42

To test these values let us calculate the angle X Y; the triangle X A B gives

cos XB
sin AX

cos XAB=

whence
7—XAB=60" 43" 50"

In the triangle X A Y we now know A X, A Y and the angle X A Y.
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Solving, we get
XY=119°5 . . . . . . . . . . . (1)

Experiment gave
119° 4/

Here again we have.considerable confirmation.

Fig. 9.

Let the plane Y X L be the plane of the prism cutting C A C'in L; it will be
necessary to find A L, X L, and the angle A L Y.
The right angled triangle L A'Y gives

sin AY= tan AL cot AYL.

The triangle X A Y gives

. sin AX sin YAX
sin LYA= sy

whence
LYA=3° 28 30"

Substituting this value, we get
AL=2° 59 10" . . . . . . . . . (2
From the same triﬁngle we get
cos YL= cosAY cos AL

whence
YL=120° 47" 10”
but
XY=119° 4’ .
SXL=104310" . . . . . . . . .. (3)

From the same triangle again

cos ALLY=tan AL cot LY

whence
FATLY=91° 47"
2 v 2
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Now we know that if O, O” are the points where the optic axes cut the unit sphere
K, the point where any wave normal meets the sphere if

KO =46
KO'=6
1 1 1 1
ovie ;Eﬁ?‘(;ﬁ‘?) cos (0—0)

;11?(1+ cos (6—8)

2 1 )
=;é—,;a—2(1—- cos (0—0))

1 0—0\ 1 1 .,/0—0
l;gcos2<—2~>=;2~—#—a; 51112( 2) R ()

If then we can determine §—§’ since p is given by experiment, this formula deter-
mines the value of p..

Now along the plane X Y, #—0' is very small, and a considerable change in the
positions of O O” will produce but small variations in the value of §—8@ and .*. of p..

Let us, therefore, take the value of the angle between the optic axes given by the
values already determined for w, and py, viz. :

pe=168560
p=168115
and the approximate value of w,
p=153013

If 2¢" is the angle between the optic axes

tan ¢'="24 / {,“%2—,“'15:}
Ma

i — e
whence

¢’ =9° 4 5"

Hence
AO=A0'=80° 55" 55"
AL= 2°59" 10"
OL=83° 55" 5”
O’L=77° 56" 45"

x=ALK=88° 138

XL=1° 438" 10"
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Let K be on the side of I. remote from X. Experiment shows that this is the
actual position of the wave normal in the case considered.

Let
KX=v/
. LK=KX—XL=y/—1° 43’ 10”
cos = cos OL cos LK+ sin OL sin LK cos X— os (LK—A\)
if

tan A= tan OL cos x

Substituting the values of O L and y

A=16° 17" 10"

1 cos OL
°g cos A

=1:0427912

LK —\=y/—18° 0’ 20”

Similarly

where
tan M= tan O'L cos
. N=8°17 30"

oL -
log “=—~=1'3243204

LR 4N =v/+46° 34’ 20”

A table on the next page gives the values of i, the angle made by the incident
wave normal with the normal to X; D4 the deviation -+ the angle X Y Y the

angle made by the wave normal in the crystal with the normal to X ; and , » being
the reciprocal of the wave velocity.
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Substituting the values of ¢ from this table in the formulze for cos 6 and cos 6" we

TABLE to determine the Value of w,.

" D+i. P 1.

e
5116 7 101 47 15 30 39 0 4927076
49 41 7 101 48 45 29 53 13 427061
47 49 7 101 57 45 98 57 43 427049
46 5 922 102 13 0 298 6 3 427039
44 26 7 102 34 45 27 14 5 4927029
42 55 27 103 3 5 96 25 31 497018

can find @ and @'

The values of 8—0’ are

Substituting these values in the formula for p, the mean of the results agrees

closely with

Thus we may take

LW W w w W Wo

7

31
37
42
47
52
57

50
30
20
50
50
40

o= 1-53013

/.La=1'685@
Mb=1'68115
p=153013

And the angle between O C and the optic axes is

9° 4 5.

If ¢ is the angle as seen in air

$=15° 21" 50"

The value Kircauo¥F found by experiment was

15° 27/

The close agreement is noteworthy.

As in the first part, the agreement is much closer than 1t would be taking RUDBERG’S

values of p,, ps, p.
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Section VI.—Application of the Theory to Experiment.— Tables giving Theoretical
Values of p.—Discussion of Results.

We can now continue the work of calculating the theoretical values of the reciprocal
of the velocity.

Consider first the plane P R/.

With the same notation we have [Section IV. (3 and 4)].

Fig. 10.

¢os OL
cos 0= ———cos (NL4+L). . . . . . . . . (1)

tan A= tan OL cos ALN
cos O'L’/
cos M

cos ' = cos(NL—\) . . . . . . . . (2

tan M= tan O’L cos ALN
0C=0'C=9° 4" 5" [Section V. (5)]
LC=1° 21" 42” [Section IL. (15)]

. OL=10°25"47". . . . . . . . . . (3)
and : .
OL=7°42"23" . . . . . . . . . . (4)
ALN=x=59° 20" 11" [Section II (17)]
Whence

A=5°217 47", . . . . . . . . . . (5)

cosOL -
sy =19946698 . . . . . . . . . (6)
N=3°56"52". . . . . . . . . . . (7)

cos O'L -
100—06-;}7=19970915 e e e e e (8)

o
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LN=LP—PN=LP—¢'=35°0"19"—¢' . . . . . . (9)
LN4A=40°226"—¢'. . . . . . . . . (10)
LN—N=31°3"927"—¢". . . . . . . . . (11)

Substituting these values we can calculate ¢ and ¢, and hence find the values of
v, and v, or their reciprocals u, and w,.

Tables V. and VI. give the results of this substitution : on the right hand for the
inner sheet, on the left hand for the outer. '

The centre columns give the values of L N4\ L N—\"

Then on either side, 8+ 6 for the inner sheet, and #—6@ for the outer. Then the
theoretical values of pu, py then the experimental values taken from Tables I. and II.,
and finally, in the outside column, the excess of theory above experiment.

The next step is to discuss the theory for the plane P Q.

With the same figure and notation as before, if this plane cut the plane A Cin L’
we have [Section IV. (3 and 4)] N, X, being values of A N in this case.

Fig. 11.

cos OL/

cos 0= o 08 (L'N+XN) .« . o oo (12)
tan A = tan OL’ cos AL/N
,_cos O'L/ , ,
cos = Y cos LWN—=N). . . . . . . . (13)

where

tan A= tan O’ cos AL’N
CO=CO0'=9° 4" 5" [Section V. (5)]
CL'=1° 15" 40" [Section IIL (7)]

SOL/=10°19"45" . . . . . . . . . (14)
OL/'=7"48'25". . . . . . . . . . (1)

AL/N=x'=5Y9° 18" 2" [Section III. (8)]

whence
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\=5°19"45" . . . . . . . . . . (16)

N =400 507, . . . ... ... (17)

L'N=L'P4PN (N being now on the side of P remote from I') =35° 3" 14”+4¢".

L'N+)\/=40° 29’ 59"—}—:75’ P (18)

L’N—)\,’=31° 2’ '24"+q,'>' e e e e e e (19)
cos O/ =

log o, =1 994786»4. e e e e e, (20)
cos 'L -

—0*0;7;/, =1-9970226. . . . . . . . . (21)

and as before, we can calculate from these data the values of 6, 8" and hence of p; p,.
Tables VII. and VIII give the results of this.
The fifth column gives the values of L N4\ for the inner sheet, the next L N—NX/
the next 6+4¢, the eighth the value of the reciprocal of the velocity calculated on
FreSNEL's theory [ by means of Section I'V. (1 and 2)],

2

;2::0524—02--— (a®—c?) cos (0+0')

1

%=a9+c2-—(a2—-02) cos (0—0)
2

the ninth, the same quantity from experiment, and the last, the excess of the
theoretical over the experimental value.

The values of —@ given in the fourth column are calculated for the inner sheet.

Now as the values of ¢’ corresponding to the same incident wave are different for
the two sheets, the values of 6 and 6" will be different ; but on referring to the values
it will be seen that after the first twenty observations, —6@" is very nearly constant
throughout the arc considered ; so that p, varies very slowly, and except just at first,
we may, to the degree of approximation required, use the value of ¢ and ¢ for the
inner sheet in calculating the theoretical value of the reciprocal of the velocity for the
outer sheet.

In the case of the first twenty observations for which §— 6" varies appreciably with
¢', the experimental values of u, are obtained by interpolation from those values in
Table I., to which they correspond.

Table V. contains the theory for I.

2 .VI' 2 i3] II.
,»  VIL o , 1L
, VIL . IV.

MDCCCLXXIX, 2 7z
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Let us consider first the inner sheet.

In Table V. we see the differences are small to begin with, and increase fairly
regularly throughout the whole of the table, the experimental value being almost
always less than the theoretical. v

Lines 4, 5, and 6 were those chosen to determine the value of u; which explains the
coincidence of the two curves in that neighbourhood. The table covers an arc of the
surface of nearly 20° as is seen by referring to the values of ¢’ in Table I.

Throughout this arc the theoretical section lies outside the experimental, the
difference between the two increasing as we proceed from the axis ;.

This continues throughout Table VI.

The first three lines of Table V1. just overlap the last three of Table V. The difference
reaches a maximum value towards the end of Table VI. at a point for which ¢'=
1°19" 54” (vide Tables I1., 21, and VI., 21), that is at about 34° away from the axis p,.

After this the difference begins to decrease at first slowly throughout Table VII.
which refers to the other prism P Q, so that the arc of section has changed slightly
between Tables VI. and VIL., both arcs passing through the point P.

Table VII. covers an arc of 22° (Table IIL.).

The first two lines in Table VIL refer to a wave normal lying on the same side of
Pas L. In the rest of the table the wave normal is on the side of P remote from L.

This arc is continued throughout Table VIIL. ; the theoretical values of w are still
greater than the experimental, but the difference diminishes as we proceed along
the arec.

The last three observations in Table VII. and the first three in Table VIII. overlap.

Table VIIL covers an arc of 20°.

Thus the observations extend over two arcs, each passing through the point P
inclined to one another at that point at so small an angle as to be almost continuous,
the one arc being 35° 40’, and the other 40° 40" in length.

The results of theory and experiment agree at the extremity of the first are, differ
most widely in the neighbourhood of the point where the two arcs meet, and tend
towards equality again throughout the second arc.

It is worth noticing that the experimental results at the end of Table V1., the end
of the first arc, agree closely with those at the beginning of Table VII., the beginning
of the second arc.

The experimental results for the inner sheet are therefore represented by a curve
which coincides with FRESNEL'S curve at the extremity of one axis, and lies inside it
throughout the next 75° of its length.

For the outer sheet the differences are less than for the inner sheet.

f—0 varies so slowly that it seemed sufficient for the purposes of comparison to
calculate every fifth theoretical value, with the exception of that portion of Table V.
for which the variations of #—6" are sensible.

The section cuts the principal section A O C between lines 4 and 5, Table V. Just
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at that point -the theoretical value is greater than the experimental. It continues so
until we reach line 18, Table V., that is for an arc of about 9°

From that point onwards the theoretical value of py is uniformly less than the
experimental.

Thus the result of experiment for the outer sheet is represented by a curve which
coincides with the theoretical section at the point in which it cuts the plane A O C,
then lies inside it for an arc of about 9°.

At this point the two again coincide, and for the rest of the arc experimented on,
the section given by experiment lies outside that given by theory; the difference
between the two increasing throughout Tables VI. and VII., and diminishing again in

Table VIII.

Section VII.—Effect of possible Errors in the Values of s, wi, p. descussed.

The next task will be to determine the effect of any small errors which may have
occurred :

(1.) In the determination of p,, ws, p.;

(2.) In the angles which fix the position of the planes P R, P Q relatively to the

axes of the surface.

(1.) pe To determine p, we considered the length of the radius vector common to
the principal section A O C and the section by the plane P R. This radius vector is
fixed in length, and is on FRESNEL'S theory the radius vector of an ellipse, axes u, and
e, inclined at a small angle to u,.

The increase in the value of u, will therefore increase the value of this angle, that
is, it will alter the position of the plane P L R’ and be more properly considered
under (2).

s is determined by the intersection of the section of the inner sheet by the plane
P R, with a circle of radius ps, and is therefore fixed at least within the limits of
experimental error.

p is found from an independent and, on the whole, less trustworthy series of
observations—Iless trustworthy because the faces were much less plane than P, Q, R.

Let us consider the effect of decreasing the value of .. i

If e be the angle between the optic axes

(11
. | T |
an €= {i 1 _i >
L~ f*fJ

As p, decreases tan e decreases; therefore e decreases.
Let us consider how this affects € and #.
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Taking the same figure as previously.

Let O’ K be an arc perpendicular to A C.
Let O, O, be the new positions of O 0.

Then
0,0=0,/0"=8¢

Let O, m, O" n be perpendicular on N O, N O, respectively.

O’L=7° approximately
O’LP=60° approximately
. LK=14° approximately

Let N fall between P and K

80=—0m=—08¢ cos NOL
80'=0,/n=20¢ecos NO/A
8(046)= —38e (cos NOL— cos NO/A)

Thus (64 6¢) is negative and decreases numerically as we approach P ; for N O L,
N O, A become more nearly equal.

Thus between K and P 046" decreases with e.

Between L and K both 6 and # decrease, therefore §-+6" decreases @ fortior:; but
8(0+0') is always numerically less than 23e.

Let us see how these changes affect u,.

We have [Section IV. (1)]

2 1 1 /1 1
S = (=1 ) cos (+6).
w® o pE (M //«a2> ( )

1 1 1
If p, is decreased, 2-1—— is increased, P is increased, 646 is decreased.
Mec

ll

Therefore cos (0—[—0) is increased so long as 046’ is less than 90°.
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1 1
Therefore PR cos (64 ¢) is increased so long as 6+ ¢ is less than 90°

And the increase in <;1§—l-}5> cos (04 0') is greatest when 046 is least.

¢ Moo

. /11 . . . '
Also the increase in <;72_ ——§> cos (04 @) is less than the increase in <—1~2+;1~2)
Me «

1 1 A e e .. .
Therefore ~——|——~ (; —;-2) cos (f+0) is increased, and this increase is greatest

'@

when 046 is greatest.
Therefore, as -6 increases up to 90° u, decreases.
When 046 is greater than 90°, cos (64 ¢') is negative.
As 040 increases, cos (04 0') increases numerically.

1 1 . . . .
Therefore <—‘2—~§> cos (4 0') increases numerically and is negative.
B '

Therefore ~——|—-— (/—}——

Therefore u, decreases.

Thus the effect of decreasing p, is to produce a decrease in the value of p,, and this
decrease continually increases as we go from L to Q.

Now if we compare the differences between the theoretical and experimental values
of u,, given in Tables V. and VI, we see that they increase with 04-¢, the theoretical
value being in excess of the expenmental

The effect of the assumed alteration in the value of u, would be to decrease the
theoretical value of w; by an amount which constantly increases, that is, to bring it
more nearly into agreement with experiment.

But the effect in Tables VII. and VIII. would be contrary.

On referring to them we see that the differences between theory and experiment
continually decrease.

The effect of the proposed alteration would be to subtract from the theoretical value
of u, given in those tables: a quantity which increases rapidly as we get further
from L.

The result would be that the theoretical value would soon become less than the
experimental, and the difference between the two would continually increase.

We might, it is true, choose the decrement of u, so as to make the extremities of the
arcs considered coincide, and then the differences would be diminished throughout.
The effect of this would be to make the theoretical section lie outside of the experi-
mental for about 75° then cut it and lie inside it.

‘Whether the two could again be made to coincide when cutting the plane A O B
experiment alone could settle.

Let us now consider the effect of the supposed change on p,.

We have

MDCCCLXXIX. _ 3 A

1 o0 e . .
;}) cos (64 &) increases @ fortore.
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2 1 1 /1 1 )
i) o0 0=0)

We have seen that 6 is decreased by the change.

¢ is at first decreased, though by less than 6, afterwards it is increased.

Therefore, for any point on the curve L P the value of 8—0" is decreased by this
alteration.

Therefore cos (0—¢’) is increased.
(l—%> cos (0— @) is increased, though by less than </:1—2—|—;}—2>

e g

1 1 1 1 ..

Therefore —2+~—3—<—é—~2> cos (0—¢) is increased.
Mo Mg Mo Ma

Therefore u, 1s decreased.

Or the variation in p, is in the same direction as in y,.

But since 0—0' is <0-+0' <Mi2_#i2> cos (0—0) is ><M%_#iz) cos (0 0).
And the whole change in

1 1 1 1

ot () o8 (=)

is much less than the whole change in

()i mieen

Or the decrease in w, is small compared with that in .

Again, as the variation in 0— @ varies from zero at L to a maximum about K, while
cos (#—0') also varies considerably, the variation in p, will be considerably different
for different points between L and K.

After passing K, however, —¢ is nearly constant all along the curve.

The change in the value of u,, therefore, will not differ much for different points,
that is, for different waves.

The whole effect of the alteration, therefore, will be to decrease throughout the
theoretical value of u,, this decrease being greatest about Table V., line 23.

In the greater part of Table V. the result will be to produce a closer agreement
between theory and experiment.

But in the rest of the work, since the theoretical value of u, is less than the experi-
mental, the effect will be to increase the difference between the two and so widen the
discrepancy between theory and experiment.

Thus taking both sheets we cannot produce on the whole a closer agreement
between theory and experiment by decreasing the value of w,. Neither can we by
increasing it.

For though we might produce closer agreement for the outer sheet by thus increasing
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the theoretical value of u,, we should add greatly to the error in the case of the inner
sheet.

Section VIIL—FEjffect of Change in Position of Planes of Prisms with reference to the
Principal Planes of the Chrystal.

We have now to discuss the effect of small variations in the position of the planes
PRand P Q.

We take P R first, and we consider its position as determined by C L and the
angle A L P, while the position of the normals to P and R is fixed by P L (vide
Section II.).

Fig. 13.

Now variations in C L and A L P produce variations in O L, 0" L, A X, &c., and
hence in @ @, while variations in L P only change 6 and ¢, O L, O’ L, A and X’ remaining
constant.

Let us consider, therefore, the variations of L P first.

A reference to our tables shows us that through the greater part of the arcs L P,
P Q, 0—¢ is constant, so that 860 considered as dependent on L P is equal to &6’

nearly.
Again,
2 1 1 1 1 p
o=t s) ) e 040)
2 /1 1 11 )
=)~ () s 0=)

and since the change in (§—¢) due to a small increment of L P is very small, such an
increment will not alter the value of p,.
But if #—¢’ is nearly constant for a small motion along L P, 0+ 6 will be nearly so
for a small motion perpendicular to L P.
Thus a small motion perpendicular to P L will not alter appreciably the value of p, ;
3 A2
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we may therefore obtain corrections to p; p, independently, to u, by supposing an
increase in the value of L P, to w, by supposing the planes P R, P Q to turn through
a small angle about some line in them.

Moreover, we shall consider that line to be in each case the line of intersection with
the plane A O C, and treat this line as the same for both planes, the two lines thus-
considered as coincident are really inclined at an angle of 3.

To find then the variation which we must assume in L P to bring the results of
theory and experiment into closer agreement for the inner sheet, we proceed as follows—

If in the equation
2 1,1\ /1 1 ,
=)~ () s 040)

we substitute an experimental value for w,, we can determine a value of (6-40).
Subtracting this from the calculated value, we get 8(0+40").
But for the displacement considered 60=248¢".
Hence we have found 86 ; but cos (LN —\)=

cos A
cos OL
by the displacement supposed; therefore we get 8(L N), and LP=LN4¢". ¢ is
constant, therefore we have found 3 L P. _

To put this plan into execution, I chose as the experimental value for u, the 21st

in Table VI,

cos 8. O Land \ are unaltered

i =162807

the differences between theory and experiment having at that point a maximum value
and being fairly regular.
The resulting value for (04 6) is

70° 57 20"
The calculated value is

70° 16" 40”
The difference is

0° 40’ 40”

.. 80=0° 20" 20"
This gives for 8(L P)
S(LP)=0° 21" 20”

Thus at this point the result of theory and experiment could be brought into
coincidence by supposing the line O P normal to the face P to turn through an angle of
0° 21" 20” in the plane L P away from L.

Before discussing the effect of this change on the values of u, in other directions,
let us consider the variation it will be necessary to make in the angle A L N to bring
the theoretical results for the outer sheet into accordance with experiment. Taking
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the experimental value for u, corresponding to the incident wave which gave rise to
the value of u, we have just been discussing, we have

‘11,2:_-1'68447

Whence by means of the formula

.9 1 1 1 1 ,
;;2:<;:2+@>-<;72W> cos (0—0)

we find
0—0'=9° 15

The value of §—6 given by theory is Table VI., line 21,
0—0'=9° 30’
‘ ‘We have to find the change in the value of x or A L N which will produce this.

In this variation 046’ is constant

L 80=—8¢
but
3(0—0)=—15
. 00==7 30"
8= 7 30”7

) From these results we can find the increment in x from the equations

cos OL
COS A

cos 0=

cos (LN —X\)

tan A= tan OL cos x
cos 0= cos OL cos LN 4 sin OL sin I;N cos X

Sy sin 650
X~ sin OL sin LN sin X

Substituting values we are led to a value of & , nearly equal to 1°. So that the new
value of x=60° 20" [Section II. (17)]

This change in the value of y produces a corresponding change in the values of A, X".

The new values are for the prism P R

A=5°12720" . . . . . . . . . . (1)

N=850" 0" . . . . . . . . .. (2
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while
L —
logczz;; =1-9945594 . . . . . . . . . (3)
OL -
log T =19970325 . . . . . . . . . (9
for the prism P Q
=510 20" . . . . . . . . . . (5
A=8°54. . . . . . . . . . .. (6
L -
logczzsox =1'9946764 . . . . . . . . . (1)
cos O'L) -
C=19969629 . . . . . . . . . (8)

/

The ensuing Table gives the values of p;, u, for nine different incident waves taken
from the previous work, calculated on the supposition that both these changes have
been made in the position of the plane P R.

The column headed Difference gives the excess of theory over experiment; that
headed a gives the excess of the theory before it was modified ; 8 gives the change in
the theoretical value of w, due to this displacement.
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Tt will be noticed that the differences for this modified theory are much less than
for the original, but they have nearly all changed sign. In fact, the correction applied,
calculated so as to produce the closest possible agreement in line 5, has been too great,
and the differences can be reduced by applying a similar but smaller correction in the
opposite direction.

Now this variation in the value of w, has been caused almost entirely by the
increase of the angle L P; we must therefore decrease this angle again, and as the
numbers in the difference column are each about one-fifth of the corresponding number
in the column B, we must decrease L P by one-fifth of the amount by which it was
previously increased.

But this increase was

S(LP)=0° 21" 20"
we must therefore decrease this by
0° 4" 15
leaving the total increase
0°17 57

In consequence of this, we must add to the moditied theoretical values of pu,
respectively, quantities equal to one-fifth of the corresponding numbers in column S.

The result gives us a new set of theoretical values, which agree with experiment
throughout to a remarkable degree.

These results are expressed in Table X,

Column 1 gives the values of u, already modified.

Column 2 gives one-fifth of quantities in B, which, when added to the values of
g, in Column 1 respectively, give Column 3 the resulting theoretical values.

Column 4 gives the experimental values, and Column 5 the excess of theory over
experiment.

TasLe X.

Modlof’%e’c}l.va.lue 1B Final value of py. Efﬁi?gfe I’f‘.ﬂ Difference.
168102 1 1-68103 1-68099 4 1
167707 7 167714 1-67721 ~7 2
1:66285 13 166298 1:66300 —2 3
164590 17 | 164607 164603 4 4
162806 18 162824 1-62807 17 5
1-60882 18 1-60900 160897 3 6
1-58346 17 1-58363 1:58365 —2 7
155138 16 1:55154 158157 —3 8
1-53779 5 1-53784 1-53774 10 9

These differences are exceedingly small—sometimes positive, sometimes negative—
but rarely greater than the possible error of experiment as appears from the tables
of error in L., I1., IIT., and IV.
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Thus we have found a plane section of the surface which agrees closely with the
results of experiment.

This section passes through L, a point on the principal section A C at an angular
distance of 1° 21’ 42” from C, is inclined to that section at an angle of 60° 20°, while
the normal to the face P lies at an angular distance from L equal to

35° 07 19”40° 17" 15" =285° 17" 84"

Under these circumstances it will be necessary to consider the probability of making
such an error as this result indicates in the position of the normal to P with reference
to the principal axes.

But before doing this we must say a few words about the variations in the values
of p, produced by the correction now considered.

The final correction will not affect any of them except the first, which Wlll be slightly
increased by it.

This follows from the fact that between lines 1 and 2 of Table IX. #—@ varies
considerably, and increases or decreases with 0@, so that w, u, increase or decrease
together.

The change considered has increased p,, it will therefore increase p,.

The difference in line 2 is considerable, but it may be noticed that the experimental
value is clearly too small, falling as it does (Table I., line 18) between two con-
siderably greater values. In the other cases the differences between theory and
experiment have been diminished but remain of the same sign as before.

A still further displacement in the same direction would therefore produce still
further agreement.

‘We have now to consider the effect of varying C L.
Let us trace the effect of increasing C L by 10"
The value of p, depends on that of C L being found from it by the formula

(Section V.)
1 1 gin *CL
e sec? OL(“Q—— _m_n_z_>
T r e
where
pe=1'53013
and 7 is given from experiment
r=1'68550

The new value of a will be found to be

pe=1 ‘68571
instead of 1°68560

This increase in the value of « will increase the angle betwen the optic axes from
9° 4’ 5”, the value already found, to 9° 9" 20”.
MDCCCLXXIX. ) 3 B



370 MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL.

We have, therefore, to discuss the effect of these changes in the theoretical values
of py, pro.

We will further suppose that the angle y 1s so altered that the section still passes

through the former position of P—i.e., so that the only error made in the previous
determination of its position has been in the position of R/,
This is probable, for C R is small and A R/, B R/, nearly rlght angles.
The new value of x will be
x=59° 32/

These changes will produce variations in the values of O L, O'L, A X, for P R/, and
OL, O L, N\, for PQ (we assume that L L is unaltered).

The complexity of the changes rendered it very difficult to discuss the effects on
M1 o from general considerations. I have therefore calculated the new values in five
different positions taken from the previous tables.

The table following gives the general results,

Tasre XI.

Wheneo taken. Difference. Modiﬁegl'l‘heory. Expeﬂment. Formerﬂ’i‘heorys Difference.
Table V., line 28 36 1'66386 1-66300 1:66352 52 1
» VL, » 11 49 1-64652 1-64603 164674 71 2
,» VI, » 21 65 1:62872 1:62807 1-62897 90 3
, VIL, ,, 21 41 1:58406 158365 1-58432 67 4
., VI, ,, 11 43 1-55200 1:55157 155216 59 5

Whence teken. Difference. Modiﬁeg 2Theory. Expe,:'iQment. Formelfl 2Theory. Difforen ce.
Table V., line 28 -1 1-68447 1-68448 1-68437 —11 1
s VI, » 11 —6 1:68446 1-68452 1-68437 —15 2
, VI, » 21 +1 1-68448 1-68447 168437 —10 3
, VIL, ,, 21 -7 1:68450 1-68457 168439 —18 4
» VI, ,, 11 0 1:68452 1-68452 1-68440 —12 5

The difference table on the left is between the modified theory and experiment, that
on the right between the former theory and experiment.

The upper table refers to the inner, the lower to the outer sheet.

It will be seen that the differences for u,, p, are both decreased, though still
remaining of the same sign.

The differences for u, are about two-thirds of their former value.

If we then increase C L still further by twice as much as previously, so that the
total increase is 307, we shall get still closer agreement for u,.
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TasLe XII

« 8. Final }’i‘lheory. }Expei’fiinel]t. Difference.
16 48 1:66304 1:66300 4
22 66 1:64608 1-64603 5
25 75 1-62822 1:62807 15
26 78 1:58354 1:58365 —11
16 48 1:55268 1-55157 11

T 8 Final l’i‘zheory. Expexlfizment. Difference.
10 30 1:68467 1-68448 19

9 .27 1-68464 168452 12
11 33 - 1:68470. 1-6844.7 23
11 33 1-68472 1:68457 15
12 36 1:68475 1-684:52 23

Column « gives the change in u, due to a change of 10" in C L.

Column S gives three times that change which, assuming the theory of proportional
parts, will be the change in p, due to a change of 830" in C L.

Subtracting this from the values of u, given by the original theory, we get the final
theoretical values of u,. These agree much more closely with experiment than the
original values.

But the effect of this further change will be to over correct p,.

The first change has reduced the differences for p, by the amounts glven by v,
Table XII.

Multiplying these by 3 we get 8, the changes produced in u, by a change of 30
in C L, and adding these values to the original theoretical values of u, we get the
final theory, which differs from experiment, by rather more than the original theory
and in the other direction.

Thus an increase of C L will not, on the whole, produce the required effect.
Similarly a decrease will not produce it either.

4

Section IX.—Possibility of an Error in the Positions of the Faces discussed.

We have seen, however, that by increasing L P by 17 5” and A L P by 1°, we can
make the agreement between theory and experiment extremely close.
This alteration in the values of L P and A L P may be effected in two ways.
‘We may suppose either that, the axes of elasticity retaining their position with
3B 2
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reference to the planes m, m/, we have made an error in the observed angles P M, P M’
(Section IL.), and hence in the position of P referred to the axes.

Or, secondly, that the position of P relatively to m m’ has been accurately found,
but that the axes of elasticity differ slightly in direction from their assumed positions,
so that O C is not parallel to the intersection of m m/, and O B does not bisect the
angle M O M.

We will take the first hypothesis first, and consider what must be the error in P M,
P M’ to give rise to the required change in the position of P.

Fig. 14.

Let P’ be the new position of P, we require M P* M' P’
Let P K be perpendicular on L P’
LK=LP approximately
KP'=0° 17" approximately
KP=PLK sin 35° approximately
=60"X%x"'57
=34 approximately

Now P K P’ is approximately a small plane triangle with a right angle at K.
PP'=,/PRF P

=,/34F17°
= 17/ 5
whence
PP'=3%
Again
cos CP'= cos CL cos LP'— sin CL sin LP’ cos ALP’
whence

CP’'=35° 58
OP =35° 43’ [Section IL (12)]
PP'= 0° 38’
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Hence from the triangle P C P" we get
PCP’=0° 58
But from the triangle A C P
ACP =57° 42" 30" [Section II,]
. ACP'=58° 40" 30"

but
ACM=58° 7" 30” [Section II. (7)]
.. MCP= 0° 33’
“cos MP'= cos MCP sin CP’
whence

MP'=54° 58 50"

The original value of M P’ was as given by the mean of a large number of
observations

MP'=54° 17" 6" [Section II, (3)]

The difference, amounting as it does to over 40’, is far beyond any possible error of
experiment.

Let us find further the change in M’ P,

cos M'P’'= sin CP’ cos M'CP’
M'CP'=63° 47'—33’
=63° 14’/
whence
M'P'=74°+39" 40"
The observed value was
M'P=75° 16" 20" [Section III. (4)]

The difference is 0° 36" 40”. This, again, is far beyond any possible experimental
error. Thus, so long as we assume the position of the axes of elasticity to be
definitely fixed in the crystal so that O Cis parallel to the intersection of m m’ while O B
bisects the angle between them, the displacement of the plane P R’ necessary to bring
the results of experiment and theory into agreement is far too great to be possible.

But there remains the supposition that the axes of elasticity have not exactly the
same position in all crystals of arragonite. So that the displacement of P R relatively
to the axes might be effected by changing slightly their position with reference to the
faces of the crystal, P R retaining their position, relatively to those faces, unchanged.
The possibility of this is a question for the mineralogist. 1 have been as yet unable to
find data for a satisfactory answer. It seems, however, plausible to suppose that in a
substance like arragonite which is not chemically pure, but contains foreign substances
to a variable degree in different specimens, some slight variation such as that indicated
might occur. '
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We can, without much difficulty, calculate the amount of the change.

Fig. 15.

We may very approximately treat the rotation round O L as if it were about O C,
C L being very small.

The effect of a rotation of 1° about O C will be to bring A and B to A, B, respec-
tively in the same plane, where

AA,=BB=1°
A, B, being to the right of A, and B.

The increment of 17’ in L P may be effected by turning the axes through an angle
of 17" about a normal to the plane L P passing through O, let O S T be this normal,
let A’ B’ C’ be the final positions of A BC,

A, A’, B, B are arcs of small circles whose centres lie on O ST at T and S respec-

tively, so that
ATA'=BSB'=17
C (' is an arc of a great circle, and is =17". .
B B'=SB,x B'SB,
SOB,=60° approximately
. SB’=sin 60°=\—§

.. B B’:L\/g
/ 2
BB'=/(BB+BB?
o SX1T2
= <60 24 1 >
=1° 2’ approximately
A A'=ATA’sin 30

=8’ 30”
' 7L
AAP= A‘/ <60’2—|— 1—}) approximately

=1° 1" approximately.
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Thus the new positions of the axes are inclined to the old at angles of 1° 1’, 1° 2,
and 17’ respectively for O A, O B, O C. So that the axis of C in its new position
would be inclined to the line of junction of m m’ at an angle of 17’, while that of b
would be inclined to the bisector of these planes at an angle of 1° 2%,

If variations such as here considered be possible, so that we cannot be certain
@ preore of the position of the axes of elasticity, the only method of testing FRESNELs
or any other theory will be by trial.

Section X.—Gleneral Results of the Investigation.

Combining the results of the two series of experiments, it seems to me most probable
that FrEsNEL's theory is only true as a first approximation,

Both series of observations have led to the discovery of considerable deviation from
the theory, unless we assume errors in the experiments, especially in the determination
of the position of the planes of the prisms with reference to the axes of the crystals,
which are greatly in excess of the amounts we can reasonably expect.

It will be noticed that the values taken for the constants u, and u; in the two parts
of the paper differ by ‘0002 and ‘00017 respectively. This is due to the fact that the
two crystals used were different. RubpBERG (Poca. Annalen, vol. xvii., p. 1) found
differences of as much as 0004 in the values of u; deduced from two specimens of
arragonite.

It may be objected that the variations between theory and experiment are not in
exactly the same direction in the two Parts; but we must remember (1) that the
arcs investigated are taken from entirely’ different portions of the surface; (2) in the
first Part, the approximately elliptic section belongs to the outer sheet; in the second,
to the inner sheet of the wave surface.

Fig. 1€.

The accompanying figure will illustrate the results of the investigation.



376 MR. R. T. GLAZEBROOK ON PLANE WAVES IN A BIAXAL CRYSTAL.

M O N is the principal plane of the first prism nearly coincident with the plane
through the optic axes A O C.

N O L the principal plane of the second prism nearly coincident with the plane
B O A, so that O N is nearly coincident with O A.

M O L the principal planes of the two prisms in the second crystal here treated as
coincident, inclined at about 60°to B O C, and cutting it in a line nearly coincident
with O C.

Hence O M is not far removed from O C. O Lis nearly in the plane A O B and
inclined at about 60° to O A or O N,

The strong lines give approximately the form of the sections of FrEsNEL'S surface
by these planes, the dotted lines the results of experiment.

In the case of the arc N’ 1" the results of theory and experiment agreed closely.

For the arcs M N, M’ N’ the experiments covered an arc of about 16° from M
and M.

For N L the experiments covered an arc extending from L to about 10° on the side
nearest to N of the point where the two arcs intersect.

For M L the experiments extended over an arc of about 70° measured from M.

Section XT.—Ejffect of Dispersion considered.

The theory of dispersion appears to me to afford a more probable explanation of
these small variations from FRESNEL’S construction.

FresveL himself remarked (¢Second Supplément au premier Mémoire sur la
double réfraction, (Huvres Complétes de FRESNEL, tom. iL) that in the case of the
vibrations which constitute light the radius of the sphere of action of the molecular
forces brought into play by the vibration is not necessarily very small compared with
the wave length.

And, consequently, it is incorrect to suppose that the propagation of each of the
disturbances of which a vibration is composed is uninfluenced by the disturbances
which precede and follow it, and that the velocity of propagation is independent of the
manner in which they proceed and follow it.

This supposition is the basis of FRESNEL’S work on double refraction.

Let us consider the effect of dispersion in a doubly refracting medium.

In an isotropic medium the relation between V, the velocity of wave propagation,
and \, the wave length, is generall y allowed to be

=a+ +w+’ &e.,

a, b, ¢, &c., being constant, the values of the terms continually decreasing, so that

. . . . 1 b . .
except in highly dispersive media we may put \ =a+35 with sufficient exactness.
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Let us suppose that an equation of this form holds in crystalline media also, only
that a, b, ¢, &c., instead of being constants are functions of the directions of propagation
and vibration; and, further, let us suppose that FRESNEL'S construction is true for

s .1 .
waves of infinite length, so that the equation ~=a gives us a FRrRESNEL'S wave surface.

From the known values of the constants of the wave surface for different rays of the
spectrum the constants of the surface for infinite wave lengths can be found, and hence
the value of @ calculated in any given direction.

If from experiment we find the value of %} or u for any wave length, the difference
p—a ought on this theory to be equal to 7%

And if we find the values of p for different wave lengths (u,, pty, g say) in the same
direction, we have

b
1 azx_ﬁ

b
Mg “—772‘2

b
3 a:i;g

whence

=0 N’
#2—“—7‘q2
/-02"0‘_7_\3_2
py—a A

To verify this I observed the values of /u in two directions for the rays C, D, and F,
with the following results :—
o\ 12403
() =17

D
M7l 10875 (first experiment)
Mo —0a
12770 (second experiment)

A\ .
(M) =146978

Fx 7% —1-47208 (first experiment)
Mp—Q

=1-47348 (second experﬁnent).

The numbers, especially in the last case, are sufficiently close to make it seem worth
while continuing the investigations.
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